Eastern Sandoval County Arroyo Flood Control Authority (ESCAFCA)

NPDES Stormwater Program MS4 Annual Report 2023

Reporting Period:

July 1, 2022 – June 30, 2023

TABLE OF CONTENTS

- 1. 2023 Annual Report Supplement
- 2. Memorandum of Understanding for NetDMR data entry by AMAFCA on behalf of ESCAFCA
- 3. Summary Memorandum and Sample Results for 2022-2023 Wet Season Monitoring
- 4. Storm Water Quality Team Outcome Report FY 2022-2023
- 5. Technical Advisory Group Cooperative Agreement
- 6. Stormwater Quality Team Cooperative Agreement
- 7. Compliance Monitoring Cooperative Cooperative Agreement

Annual Report Format

National Pollutant Discharge Elimination System Stormwater Program MS4 Annual Report Format

Check box if you are submitting an individual Annual Report with one or more cooperative program	\times
elements.	

Check box if you are submitting an individual Annual Report with individual program elements only.

Check box if this is a new name, address, etc. \square

1. MS4(s) Information

Eastern Sandoval County Arroyo Flood Control Authority				
Name of MS4				
Troy	Martinez	Public Works Director		
Name of Contact Person (First)	(Last)	(Title)		
(505) 867-3311	tmartinez@townofbernalillo.	org		
Telephone (including area code)	E-mail			
PO Box638				
Mailing Address				
Bernalillo	NM	87004		
City	State	ZIP code		
What size population does your MS	84(s) serve?" 8,000 N	IPDES number		
What is the reporting period for this	s report? (mm/dd/yyyy) From Jul 1	I, 2022 to Jun 30, 2023		
 Water Quality Priorities A. Does your MS4(s) discharge 	ge to waters listed as impaired on a state 30	03(d) list? 🗌 Yes 🔀 No		
	s a wasteload allocation to your MS4(s). U	L has been approved by EPA for each, and se a new line for each impairment, and attach		
Impaired Water	Impairment Ap	proved TMDL TMDL assigns WLA to MS4		
		Yes No Yes No		
		Yes 🗌 No 🗌 Yes 🗌 No		

Yes

Yes

🗌 No

🗌 No

🗌 No

No No

Yes

Yes

2. B. Continued

Impair	ed Water	Impairment	Approved	TMDL T	MDL assigns	WLA to MS4
			Yes	🗌 No	Yes	🗌 No
			Yes	🗌 No	Yes	🗌 No
			Yes	🗌 No	Yes	🗌 No
			Yes	🗌 No	Yes	🗌 No
C.	What specific sources cont	tributing to the impairment(s) are you	u targeting in	your storm	water program	1?
Pet wa	aste, sediment, floatables, il	licit discharges, oil				
D.		gh-quality waters (e.g., Tier 2, Tier a ate or federal designation)?	3, outstanding	g natural	Yes	🔀 No
E.	Are you implementing add	itional specific provisions to ensure	their continue	ed integrity?	Yes	🔀 No
	pollutants?	blic Participation rogram targeting specific pollutants a c sources and/or pollutants addressed			⊠ Yes n program?	🗌 No
Pet Wa	aste, floatables, illicit discha	rges, oil				
r	fully or partially attributab	utcome(s) (e.g., quantified reduction le to your public education program ddle Rio Grande Storm Team				blications)
D.	2	ommittee or other body comprised o regular input on your stormwater pro	1	nd other	🗌 Yes	🔀 No
4. A.	Construction Do you have an ordinance	or other regulatory mechanism stipu	lating:			
	Erosion and sediment cont	rol requirements?			Yes	🔀 No
	Other construction waste c	control requirements?			Yes	🔀 No
	Requirement to submit cor	nstruction plans for review?			Yes	🔀 No
	MS4 enforcement authorit	y?			Yes	🛛 No
B.	Do you have written proce	dures for:				
	Reviewing construction pl	ans?			Yes	🔀 No
	Performing inspections?				X Yes	No
	Responding to violations?				Yes	No
C.		$\frac{1}{2}$ ve construction sites ≥ 1 acre in ope	ration in your	jurisdiction	n at any time d	
D.		ntified in 4.C did you inspect during	this reporting	period?	0	
E.	-	frequency with which your program				
All ESC	CAFCA-owned sites are insp	pected by ESCAFCA personnel at a n				rs inspect sites
Const	ruction Sites as needed.					

F.	Do you	prioritize	certain	construction	sites for	r more frec	quent insp	pections?

If Yes, based on what criteria?

5.

All ESCAFCA-owned sites are inspected

G. Identify which of the following types of enforcement actions you used during the reporting period for construction activities, indicate the number of actions, or note those for which you do not have authority:

	Yes Notice of violation No Authority						
	Yes "Administrative filles" 0 No Authority						
	Yes Stop Work Orders 0 No Authority						
	Yes Civil penalties 0 No Authority						
	\Box Yes Criminal actions 0 No Authority \boxtimes						
	\Box Yes Administrative orders 0 No Authority \boxtimes						
	Yes Other Contractual Documents						
Н.	H. Do you use an electronic tool (e.g., GIS, data base, spreadsheet) to track the locations, inspection results, and enforcement actions of active construction sites in your jurisdiction?	Yes	🔀 No				
I.	I. What are the 3 most common types of violations documented during this reporting period?						
No vic	lo violations occured. ESCAFCA has Stop Work authority on ESCAFCA-owned projects.						
J.	J. How often do municipal employees receive training on the construction program? As N	eeded					
5. A.	Illicit Discharge Elimination A. Have you completed a map of all outfalls and receiving waters of your storm sewer system?	🗌 Yes	🔀 No				
В.	B. Have you completed a map of all storm drain pipes and other conveyances in the storm sewer system?	Have you completed a map of all storm drain pipes and other conveyances in the storm \Box Yes \boxtimes No					
C.	C. Identify the number of outfalls in your storm sewer system.""""""""""""""""""""""""""""""""""""						
D.	D. Do you have documented procedures, including frequency, for screening outfalls?	Yes	🔀 No				
E.	E. Of the outfalls identified in 5.C, how many were screened for dry weather discharges during	g this repo	ting period?				
n	n/a						
F.	F. Of the outfalls identified in 5.C, how many have been screened for dry weather discharges a obtained MS4 permit coverage?	at any time	since you				
G.	G. What is your frequency for screening outfalls for illicit discharges? Describe any variation	based on s	ize/type.				
All ESO	Il ESCAFCA facilities are inspected at a minimum twice per year (pre and post monsoon) for a c	ondition c	f facility assets				
<u> </u>	H. Do you have an ordinance or other regulatory mechanism that effectively prohibits illicit discharges?	Yes	No No				
I.	I. Do you have an ordinance or other regulatory mechanism that provides authority for you to take enforcement action and/or recover costs for addressing illicit discharges?	Yes	🔀 No				

	J.	During this reporting period, how many illicit discharges/illegal connections have you discovered?				
	К.	Of those illicit discharges/illegal connections that have been discovered or reported, how many have been				
		eliminated?""""0				
	L.	L. How often do municipal employees receive training on the illicit discharge program? As neede				
6.	A.	Stormwater Management for Municipal Operations A. Have stormwater pollution prevention plans (or an equivalent plan) been developed for:				
	All	public parks, ball fields, other recreational facilities and other open spaces	Yes	🛛 No		
	All	municipal construction activities, including those disturbing less than 1 acre	Yes	🔀 No		
	All	municipal turf grass/landscape management activities	Yes	🔀 No		
	All	municipal vehicle fueling, operation and maintenance activities	Yes	🔀 No		
	All	municipal maintenance yards	Yes	🔀 No		
	All	municipal waste handling and disposal areas	Yes	🔀 No		
	Ot	her				
	B.	Are stormwater inspections conducted at these facilities? Yes No				
	C.	If Yes, at what frequency are inspections conducted?""""""""""""""""""""""""""""""""""""				
	D.	List activities for which operating procedures or management practices specific to storm	water managemer	nt have		
_		been developed (e.g., road repairs, catch basin cleaning).				
Р	re an	d post-monsoon inspection and cleaning of flood control facilities				
	Е.	Do you prioritize certain municipal activities and/or facilities for more frequent inspection?	Yes	🛛 No		
	F.	If Yes, which activities and/or facilities receive most frequent inspections?				
n	/a					
	G.	Do all municipal employees and contractors overseeing planning and implementation of stormwater-related activities receive comprehensive training on stormwater management	? Xes	🗌 No		
	Н.	If yes, do you also provide regular updates and refreshers?	X Yes	🗌 No		
_	I.	If so, how frequently and/or under what circumstances?				
C	ontra	cted technical staff aquires training on stormwater management practices.				
7.	A.	Long-term (Post-Construction) Stormwater Measures Do you have an ordinance or other regulatory mechanism to require:				
	Sit	e plan reviews for stormwater/water quality of all new and re-development projects?	🗌 Yes	🛛 No		
	Lo	ng-term operation and maintenance of stormwater management controls?	Yes	🛛 No		
	Re	trofitting to incorporate long-term stormwater management controls?	Yes	🔀 No		
	В.	If you have retrofit requirements, what are the circumstances/criteria?				
Fo	or all	ESCAFCA-owned projects, all site plan review includes stormwater quality evaluation a	nd O&M evaluati	on		
	С	What are your criteria for determining which new/re-development stormwater plans you projects, projects disturbing greater than one acre, etc.)?	will review (e.g.	, all		
Α	II ESC	CAFCA-owned projects are reviewed				

D.	Do you require water quality or quantity design standards or performance standards, either directly or by reference to a state or other standard, be met for new development and re-development?	Yes No						
E.	E. Do these performance or design standards require that pre-development hydrology be met for:							
Flo	ow volumes	🗌 Yes 🛛 No						
Pe	ak discharge rates	🗌 Yes 🛛 No						
Di	scharge frequency	🗌 Yes 🛛 No						
Flo	ow duration	🗌 Yes 🛛 No						
F.	Please provide the URL/reference where all post-construction stormwater management standar	ds can be found.						
n/	a							
G.	How many development and redevelopment project plans were reviewed during the reporting	period to assess						
	impacts to water quality and receiving stream protection?							
H.	How many of the plans identified in 7.G were approved?							
I.	How many privately owned permanent stormwater management practices/facilities were inspe-	cted during the						
	reporting period? 0							
J.	How many of the practices/facilities identified in I were found to have inadequate maintenance	e? n/a						
К.	How long do you give operators to remedy any operation and maintenance deficiencies identif	ied during						
	inspections?"""""""n/a							
L.	Do you have authority to take enforcement action for failure to properly operate and maintain stormwater practices/facilities?	Yes 🛛 No						
M.	How many formal enforcement actions (i.e., more than a verbal or written warning) were taken	for failure to						
	adequately operate and/or maintain stormwater management practices?							
N.	Do you use an electronic tool (e.g., GIS, database, spreadsheet) to track post-construction BMPs, inspections and maintenance?	Yes 🛛 No						
О.	Do all municipal departments and/or staff (as relevant) have access to this tracking system?	Yes 🛛 No						
P.	How often do municipal employees receive training on the post-construction program? As n	eeded						
A.	Program Resources What was the annual expenditure to implement MS4 permit requirements this reporting period	? \$~2,000.00						
В.	What is next year's budget for implementing the requirements of your MS4 NPDES permit?	\$~1,000.00						
C.	This year what is/are your source(s) of funding for the stormwater program, and annual revenu percentage) derived from each?	e (amount or						
	Source: Property Tax Mill Levy Amount \$	OR % 100						
	Source: Amount \$	OR %						
	Source: Amount \$	OR %						
D.	How many FTEs does your municipality devote to the stormwater program (specifically for in	nplementing the						
	stormwater program; not municipal employees with other primary responsibilities)?""""[0							

8.

E. Do you share program implementation responsibilities with any other entities? 🛛 🖂 Yes 🗌 No						
Entity	Activity/Task/Responsibility	Your Oversight/Accountability Mechanism				
Compliance Mon	Sampling and Monitoring Wet Weather	Signed Agreement				
Stormwater Qual	Education and Outreach	Signed Agreement				
Technical Advisor	Technical information Exchange	Signed Agreement				

9. Evaluating/Measuring Progress

A. What indicators do you use to evaluate the overall effectiveness of your stormwater management program, how long have you been tracking them, and at what frequency? These are not measurable goals for individual management practices or tasks, but large-scale or long-term metrics for the overall program, such as macroinvertebrate community indices, measures of effective impervious cover in the watershed, indicators of in-stream hydrologic stability, etc.

Indicator <i>Example:</i> E. coli	Began Tracking (year) 2003	Frequency Weekly April–September	Number of Locations 20
Various (EPA approved analyte list)	2016	Qualifying Events (up to 7)	2
Various (EPA approved analyte list)	2014	Wet Season, annually	8
Others per AMAFCA website			

B. What environmental quality trends have you documented over the duration of your stormwater program? Reports or summaries can be attached electronically, or provide the URL to where they may be found on the Web.

Data collected by the Compliance Monitoring Cooperative (CMC)

10. Additional Information

Please attach any additional information on the performance of your MS4 program, including information required in Parts I.C, I.D, and III.B. If providing clarification to any of the questions above, please provide the question number (e.g., 2C) in your response.

Certification Statement and Signature

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Federal regulations require this application to be signed as follows: For a municipal, State, Federal, or other public
facility: by either a principal executive or ranking elected official.

Signature		Jack Torres, Mayor	12/29/2023
I	0		

Name of Certifying Official, Title

Date (mm/dd/yyyy)

No No

X Yes

Bohannan 🛦 Huston

Courtyard I

MEMORANDUM

DATE: December 29, 2022

TO: Patrick Chavez, PE, AMAFCA

- FROM: Sarah Ganley, PE, ENV-SP Savannah Maynard Emma Adams, El
- CMC Wet Season, Wet Weather Stormwater Monitoring SUBJECT: Data Verification, Analysis Results Database, and Reporting Memo FY 2023 Wet Season (July 1, 2022 to October 31, 2022)

Notification of In-Stream Water Quality Exceedances

For downstream notification purposes, the following parameters for in-stream samples taken in the Rio Grande for the FY 2023 wet season had results that exceeded applicable water quality standards (WQSs) for one or more samples: E. coli, polychlorinated biphenyls (PCBs), and gross alpha, adjusted. Table 1 summarizes the samples with exceedances and the applicable WQS that was exceeded. Additional details on the sampling results are provided in this memo.

	Parameters, Applicable Water Quality Standard (WQS), and Results Exceeding Applicable WQS			
	E. coli	PCBs	Gross Alpha, Adjusted	
Sampling Date Location	WQS: 88 MPN (CFU/100 mL)	WQS: 0.00017 ug/L	WQS: 15 pCi/L	
	Pueblo of Isleta Primary Contact Ceremonial & Recreational	Pueblo of Isleta Human Health Criteria (based on fish consumption only)	Pueblo of Isleta and NM Domestic Water Supply & Livestock Watering Designated Uses	
10/5/2022 Rio Grande North Angostura Diversion Dam Pre-Storm Sample – E. coli Only	135 MPN (CFU/100mL)	No Exceedance	No Exceedance	

Table 1: Parameters Detected Above Applicable Water Quality Standards CMC FY 2023 Wet Season Monitoring

P:\20230323\WR\Reports\Final\FY 2023 Wet Season\CMC Monitoring FY23 Wet Seas Memo Rev1.docx

7500 Jefferson St. NE Albuquerque, NM 87109-4335

www.bhinc.com voice: 505.823.1000 facsimile: 505.798.7988 toll free: 800.877.5332

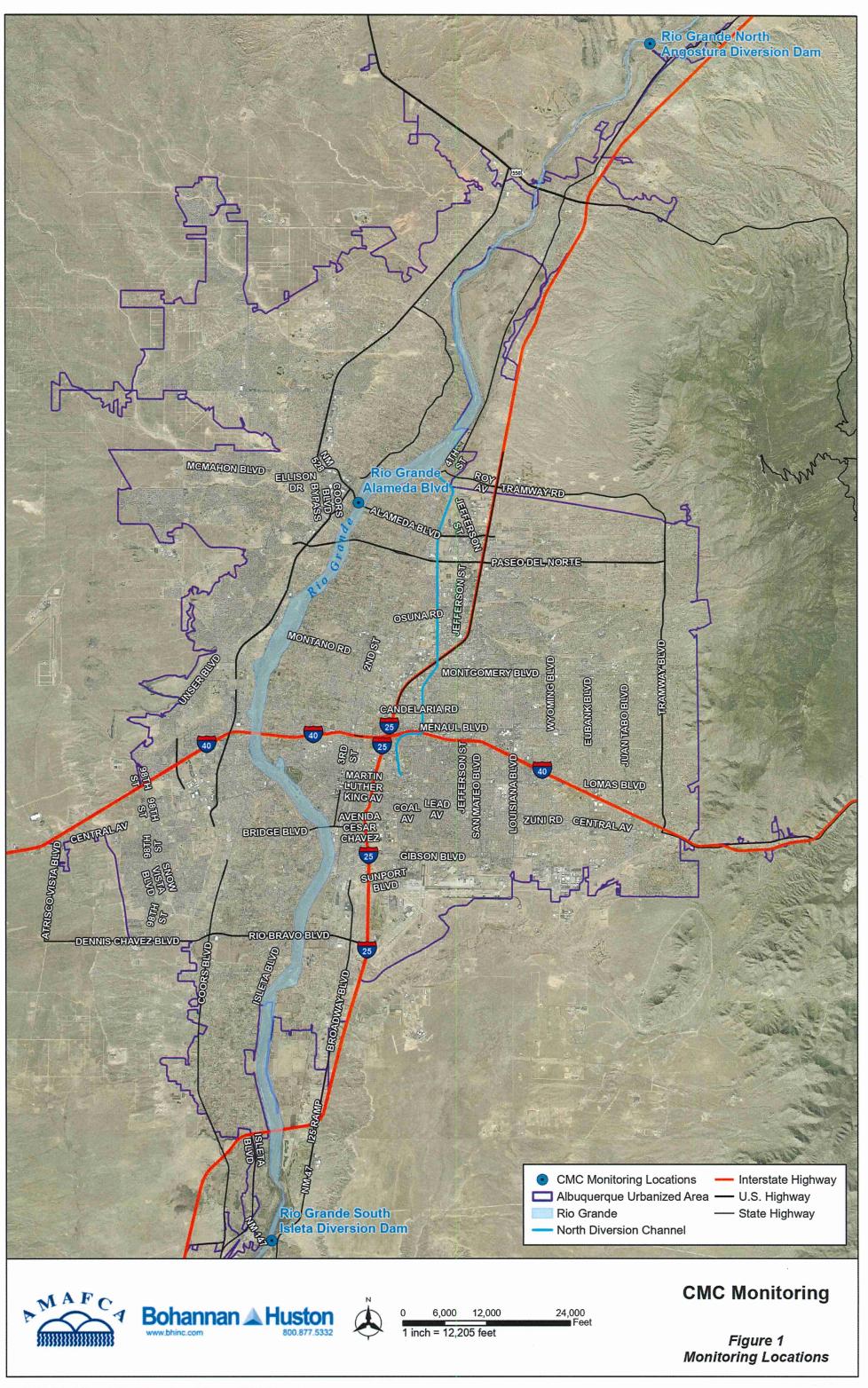
Table 1 (continued).

	Parameters, Applicable Water Quality Standard (WQS), and Results Exceeding Applicable WQS					
Sampling Date Location	E. coli	PCBs	Gross Alpha, Adjusted			
	WQS: 88 MPN (CFU/100 mL)	WQS: 0.00017 ug/L	WQS: 15 pCi/L			
	Pueblo of Isleta Primary Contact Ceremonial & Recreational	Pueblo of Isleta Human Health Criteria (based on fish consumption only)	Pueblo of Isleta and NM Domestic Water Supply & Livestock Watering Designated Uses			
10/5/2022 Rio Grande at Alameda Bridge E. coli Only	No Exceedance	Not Tested	Not Tested			
10/6/2022 Rio Grande South Isleta Diversion Dam	No Exceedance	0.0011 ug/L	22.98 pCi/L			

Overview of Stormwater Monitoring Activity

Bohannan Huston, Inc. (BHI) has been tasked to perform water quality services for the Compliance Monitoring Cooperative (CMC) Stormwater Data Verification, Database, and Reporting for the Wet Weather Stormwater Quality Monitoring Program for Fiscal Year (FY) 2023 (July 1, 2022 to June 30, 2023). The scope of work for this task includes data verification of the stormwater laboratory analysis results, compiling the analysis results into a database, and calculating the E. coli loading to compare with the Waste Load Allocation (WLA) for the qualifying storm events. The stormwater compliance monitoring is conducted separately by Daniel B. Stephens & Associates, Inc. (DBS&A) and is not a part of this task. This task is being conducted to assist the CMC members with their comprehensive monitoring and assessment program for compliance under the 2014 Middle Rio Grande (MRG) Watershed Based Municipal Separate Storm Sewer System (MS4) Permit, NPDES Permit No. NMR04A000 ("WSB MS4 Permit").

The WSB MS4 Permit entered Administrative Continuance in December 2019 when U.S. Environmental Protection Agency (EPA) Region 6 did not issue a new MS4 Permit before the current MS4 Permit's expiration date. The MRG Technical Advisory Group (TAG) sent EPA a letter dated October 15, 2019, acknowledging Administrative Continuance after the expiration date of the 5-year Permit term. Until a new MS4 Permit is issued, there are no compliance monitoring requirements for the CMC in the Rio Grande. As identified in the CMC Monitoring Plan, the WSB MS4 Permit required a minimum of seven (7) storm events be sampled at both the Rio Grande North and Rio Grande South locations (refer to Figure 1, page 4). All Permit required samples have been obtained by the CMC, as well as two (2) samples obtained in FY 2021, one


(1) sample obtained in FY 2022 wet season, and one (1) sample obtained in FY 2023 wet season during Administrative Continuance; all 11 CMC samples are summarized in Table 2 below.

No. of Storm Events Required to Sample	CMC-WSB MS4 Permit Required Samples per Season	FY (Date) Samples Obtained for CMC
1	#1 Wet Season	FY 2017 (8/10/2016)
2	#2 Wet Season	FY 2017 (9/12/2016)
3	#3 Wet Season	FY 2017 (9/21/2016)
4	#1 Dry Season	FY 2017 (11/21/2016)
5	#2 Dry Season	FY 2019 (3/13/2019)
6	Any Season	FY 2018 (Wet Season - 7/27/2017)
7	Any Season	FY 2018 (Wet Season - 9/27/2017)
Not Required	Wet Season	FY 2021 (10/28/2020)
Not Required	Dry Season	FY 2021 (4/28/2021)
Not Required	Wet Season	FY 2022 (9/1/2021)
Not Required	Wet Season	FY 2023 (10/5/2022)

Table 2: CMC Sample SummaryCompared to WSB MS4 Permit Requirements

During the WSB MS4 Permit Administrative Continuance, the CMC members chose to continue sampling within the Rio Grande to support their MS4 program needs and gather additional data in support of the future MS4 Permit compliance. This memo reports on the wet weather stormwater monitoring activity for the FY 2023 wet season (July 1, 2022 to October 31, 2022).

The CMC Excel database was updated with the FY 2023 wet season, wet weather monitoring data as results were received. The database contains sample location, sample date, analyses conducted, methods used, applicable surface WQSs, WSB MS4 Permit required Minimum Qualification Levels (MQL) and results.

P:\20230125\WR\Reports\Preliminary & Draft\Figures\APRXs\Figure1.aprx Author: mcrooks

Summary of the CMC Sampling Plan

Sampling Parameters:

Samples from both the Rio Grande North and Rio Grande South monitoring locations were analyzed for the parameters defined in the EPA approved WSB MS4 CMC Monitoring Plan, May 5, 2016. The parameter list for both locations, which is intended to characterize stormwater discharges into the river, is as follows:

Total Suspended Solids (TSS) Total Dissolved Solids (TDS) Chemical Oxygen Demand (COD) Biological Oxygen Demand -5-day (BOD₅) Dissolved Oxygen (DO) Oil & grease (N-Hexane Extractable Material) E. coli pН Total Kieldahl Nitrogen (TKN) Nitrate plus Nitrite **Dissolved Phosphorus** Ammonia plus Organic Nitrogen (Nitrogen, Ammonia and Nitrogen, Total) Phosphorous (Total Phosphorous) Polychlorinated Biphenyls (PCBs - Method 1668A) Gross Alpha, adjusted Tetrahydrofuran Benzo(a)pyrene Benzo(b)fluoranthene (3, 4 Benzofluoranthene) Benzo(k)fluoranthene Chrvsene Indeno (1,2,3-cd) Pyrene Dieldrin Pentachlorophenol Benzidine Benzo(a)anthracene Dibenzofuran Dibenzo(a, h)anthracene Chromium VI (Hexavalent) Copper – Dissolved Lead – Dissolved Bis (2-ethylhexyl) phthalate Conductivity Temperature

Hardness (as CaCO3) was added to the parameter list to allow dissolved metal results to be compared to the applicable WQSs. DO, pH, conductivity, and temperature are required by the WSB MS4 Permit to be analyzed in the field during sample collection, which was conducted by DBS&A, within 15 minutes of sample collection. All E. coli samples were submitted to the laboratory within eight (8) hours of collection in order to meet the specified hold time.

Sampling Locations:

The sampling locations are shown in Figure 1, page 4.

Rio Grande North – In-stream sampling within the Rio Grande was performed upstream of the Angostura Diversion Dam at the north end of the watershed. The location is upstream of all inputs from the Urban Area (UA) to the river and provides the background water conditions.

Rio Grande South – In-stream sampling within the Rio Grande was performed at the Isleta Bridge at the south end of the watershed. The location is downstream of all inputs from the UA to the river and provides the downstream water conditions. These locations have been accepted by EPA and the New Mexico Environment Department (NMED) to meet the WSB MS4 Permit requirements in Part III.A.

During this FY 2023 wet season, an E. coli sample was collected within the Rio Grande at Alameda Blvd. This is the location of the NMED defined stream segment divide (refer to Figure 6). This sample point was added after discussion with NMED in February 2017 regarding potential refinements to E. coli loading calculations.

Sample Collection:

As mentioned previously, sample collection for the CMC is being conducted by DBS&A (through a separate on-call contract). Since BHI was not involved in the sample collection, this task and memo do not address the details of the methodologies regarding sampling, determining if an event was a qualifying storm event, or determining the timing of the hydrograph at the Rio Grande Alameda and Rio Grande South locations.

DBS&A provided BHI their field notes and field sample data (temperature, DO, specific conductivity, and pH) for the FY 2023 wet season sampling. AMAFCA provided BHI the completed laboratory analysis reports from Hall Environmental Analysis Laboratory (HEAL) for this monitoring season.

Quality Assurance Project Plan (QAPP):

AMAFCA provided BHI with the Draft Quality Assurance Project Plan (QAPP) for the CMC dated June 14, 2016. DBS&A followed this QAPP during sample collection. BHI used this QAPP and the included standard operating procedures (SOPs) for the data verification and validation.

Monitoring Activity & Lab Analysis Summary

The list below provides a summary of the CMC comprehensive monitoring program activities completed for the FY 2023 wet season from July 2022 through October 2022. One (1) qualifying storm event was sampled and analyzed during the FY 2023 wet season.

October 5-6, 2022 – Qualifying Storm Event – Full Analysis of Samples. Samples were collected at the Rio Grande North and Alameda Blvd locations beginning at 11:25 a.m. and 1:30 p.m., respectively. These samples were sent to the laboratory for an E. coli test. The CMC determined that the storm event beginning October 5 was a qualifying storm event. A Rio Grande South sample was collected beginning at 8:15 a.m. on October 6. The samples from the North (collected October 5) and South (collected October 6) locations were taken to HEAL for full parameter testing.

Stormwater Quality Database for CMC

As stated previously, there was one (1) qualifying storm event during the FY 2023 wet season, wet weather monitoring sampled by the CMC, which occurred October 5-6, 2022. DBS&A's field notes containing DO, pH, conductivity, and temperature measurements, as well as sampling comments have been received, and field results have been added to the database. Additionally, the HEAL reports for the corresponding time period have been received, added to the database, and are provided with this memo (Attachment 1). The laboratory reports attached to this memo have BHI added comments including the field parameter measurements and other relevant notes related to the laboratory report.

Database Data Entry:

The CMC Excel database was updated with the FY 2023 wet season, wet weather monitoring data. The database contains sample locations, sample date, analyses conducted, methods used, applicable surface water quality standards (WQS), WSB MS4 Permit required Minimum Quantification Levels (MQL), and analysis results. The database was updated under this Task to include the Rio Grande at Alameda sample location. Applicable surface WQSs found in New Mexico Administrative Code (NMAC) 20.6.4, as well as the Pueblo of Isleta WQSs, are entered in the Excel database for comparison purposes with testing results. There is an indicator in the database to show if the monitoring results exceed the applicable surface WQS. An exceedance is not a violation of the WSB MS4 Permit, as the Permit does not have numeric discharge limitations. These ">WQ Standard" flags simply and quickly show the CMC members where the results of the lab data exceed the applicable WQS.

Water quality data was entered into the database upon receipt of the lab reports. All data entered into the database is initially denoted with a "P" to indicate that it is provisional and has not been through the verification and validation process yet. Full parameter analyses of qualifying storm events for both Rio Grande North and Rio Grande South locations were entered respectively into the database. The E. coli only samples from the Rio Grande Alameda location were also entered into the database.

Data Verification and Validation:

The HEAL analysis reports were provided to BHI by AMAFCA. The lab reports also contain the Chain of Custody for the submitted samples. Field data was requested by and provided to BHI by DBS&A. Data verification and validation (V&V) was conducted by BHI on all field notes, lab reports, and Chain of Custody documents in accordance with the CMC WQS Operating Procedure (SOP) #2, which is part of the existing CMC QAPP, Draft June 14, 2016. These procedures are based on EPA Guidance for Environmental Data Verification and Validation (EPA, 2008).

As stated in the QAPP, the V&V process was completed by a different person than the one who entered the data into the database. The V&V process included use of the *Data Verification and Validation Worksheet* (provided in the QAPP). For this task, field data was verified first, confirming all field notes were complete. BHI handled field parameter questions directly with DBS&A. Chemical data verification began as soon as the lab reports were received, checking that all parameters were tested and looking for any obvious exceedances of WQS. Other steps listed on the *Data Verification and Validation Worksheet* were completed after all data from the laboratory was received and entered into the database. Sample blank results were reviewed to identify potential contamination during field processing or transport. Replica/duplicate samples were evaluated based on relative

percent difference (as described in more detail in the QAPP) to determine the variability of the samples.

All CMC FY 2023 wet season data met the appropriate QA/QC requirements. If there were any data that did not meet the appropriate QA/QC requirements, it would have been assigned an appropriate laboratory qualifier or validation codes. A summary of validation codes is provided in the QAPP.

Once the V&V process was completed, the worksheets were signed. Copies of the V&V worksheets are provided with this memo (Attachment 2). In the database, data that was checked during the V&V process was then changed from being denoted with a "P" for provisional to a "V" for verified, and laboratory qualifiers were added, as needed.

CMC FY 2023 Wet Season Assessment and Evaluation of Monitoring Results

The EPA approved WSB MS4 CMC Monitoring Plan, May 5, 2016, has 33 parameters to monitor at the Rio Grande North and Rio Grande South monitoring locations. Of these 33 parameters, 19 parameters were not detected in the FY 2023 wet season samples at either the Rio Grande North or South locations. Refer to Table 3 for a list of the parameters that were not detected.

Parameters Not Detected							
Oil and Grease (N-Hexane Extractable Material)	Dieldrin						
Nitrate plus Nitrite	Pentachlorophenol						
Dissolved Phosphorous	Benzidine						
Ammonia (mg/L as N)	Benzo(a)anthracene						
Tetrahydrofuran	Dibenzofuran						
Benzo(a)pyrene	Dibenzo(a,h)anthracene						
Benzo(b)fluoranthene (3, 4 Benzofluoranthene)	Dissolved Lead						
Benzo(k)fluoranthene	Chromium VI (Hexavalent)						
Chrysene	Bis (2-ethyhexyl) Phthalate (other names:						
Indeno (1,2,3-cd) Pyrene	Di(2-ethylhexly)phthalate, DEHP)						

Table 3: Parameters Not Detected CMC FY 2023 Wet Season Monitoring

For the remaining 14 parameters on the CMC monitoring parameter list, only three (3) parameters (E. coli, PCBs, and gross alpha, adjusted) had exceedances of the applicable surface WQS found in New Mexico Administrative Code (NMAC) 20.6.4 and the Pueblo of Isleta WQS during the FY 2023 wet season. These exceedances are summarized on Table 1, pages 1-2, and discussed below in further detail.

E. coli:

The E. coli results collected during the FY 2023 wet season are summarized in Table 4.

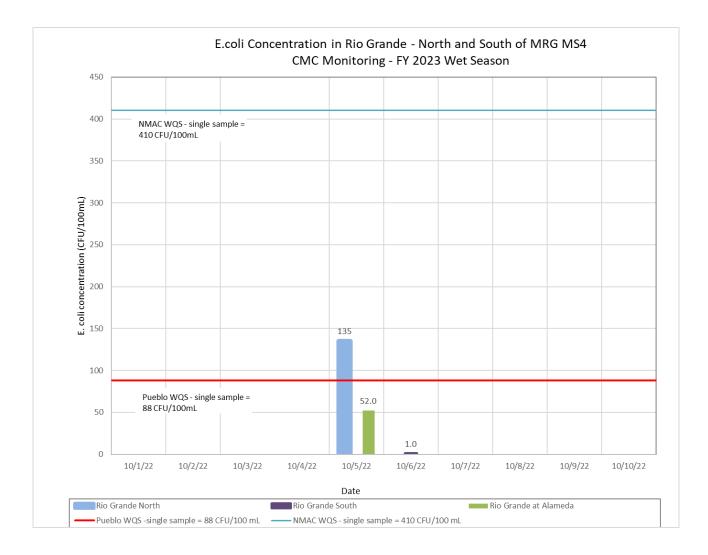

Date – Rio Grande Location	E. coli Results MPN (CFU/100 mL)
October 5, 2022 – North	135
October 5, 2022 – Alameda	52
October 6, 2022 – South	<1

Table 4: E. coli ResultsCMC FY 2023 Wet Season Monitoring

At the Rio Grande North location (upstream of the Albuquerque UA, at the Angostura Diversion Dam), one (1) sample was collected and tested for E. coli. This E. coli result exceeded Pueblo of Isleta and Pueblo of Sandia's primary contact-single sample WQS of 88 CFU/100 mL. This October 5 sample was below NMAC's primary contact-single sample WQS of 410 CFU/100 mL. At the Rio Grande South location (downstream of the MS4 UA), one (1) sample was collected and tested for E. coli. This sample did not exceed any WQSs. This E. coli lab result at the Rio Grande South location is the lowest value that the CMC has seen reported in the Rio Grande at this location. AMAFCA called HEAL to discuss this result and verify that the reported result was correct.

In addition, the CMC collected one (1) E. coli sample in the Rio Grande at Alameda Blvd. during the FY 2023 wet season. The Alameda Blvd. analysis point was based on discussions with NMED in February 2017 on collecting actual E. coli data at the stream segment divide verses using an area percentage (as defined in the TMDL) for E. coli loading calculations. The lab results showed that the sample had an acceptable E. coli concentration below the primary contact-single sample Pueblo of Isleta WQS (88 CFU/100 mL) and the primary contact-single sample NMAC WQS (410 CFU/100 mL).

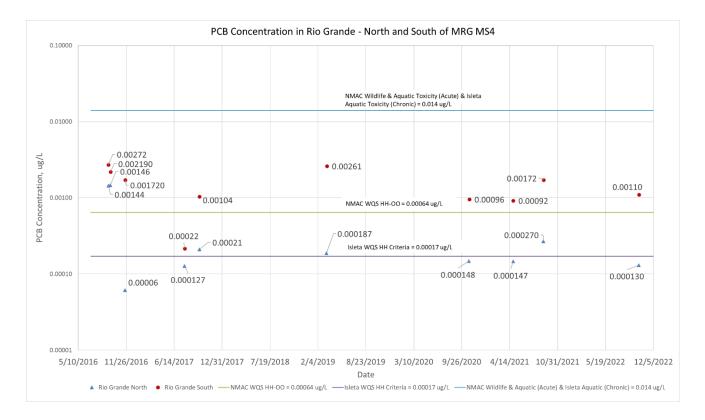

As a reminder, in January 2017 the CMC members clarified with NMED that the units MPN/100 mL and CFU/100 mL are considered to be interchangeable for the purposes of this stormwater quality monitoring reporting. The New Mexico and Pueblo WQSs for E. coli are currently in units of CFU/100 mL while the lab reports are typically in units of MPN/100mL. The graph presented in this section uses units of CFU/100 mL to be consistent with the WQS units. Refer to Figure 2 for a graphical representation of E. coli results from October 2022.

Figure 2: E. coli Results in Rio Grande CMC Monitoring – FY 2023 Wet Season

PCBs:

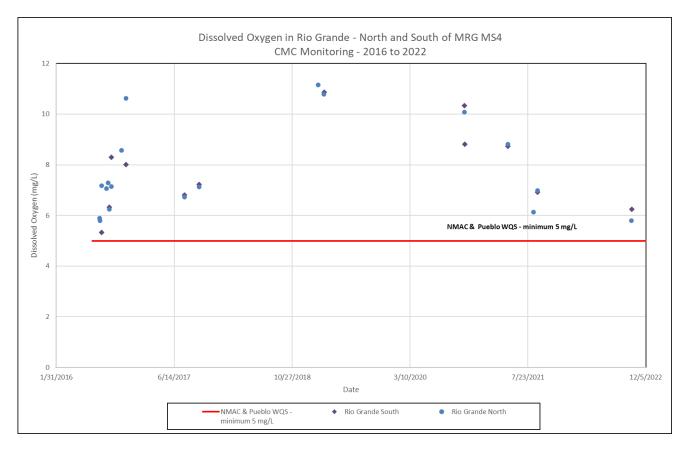
There are multiple surface WQS values listed for PCBs in both the Pueblo of Isleta and the State of New Mexico standards for the various designated uses. The PCB results for samples collected from the Rio Grande during the FY 2023 wet season stormwater event were below the minimum quantification level (MQL) established in EPA standards for the MS4 NPDES Permit (Appendix F, 0.2 ug/L for PCBs). The PCB results for the Rio Grande North sample were also well below the New Mexico Surface WQSs and Pueblo of Isleta Surface WQSs for designated uses including drinking water (0.5 ug/L) and wildlife habitat, acute aquatic life, and chronic aquatic life (0.014 ug/L). However, the CMC sample from the Rio Grande South location was above the Pueblo of Isleta human health criteria (based on fish consumption only) WQS for surface waters. The human health-organism only criterion is based upon human consumption of fish and other aquatic life that bioaccumulate contaminants over time. The PCB results from 2016 through 2022 are shown in Figure 3 relative to several of the WQSs for PCBs.

Figure 3: PCB Monitoring Results in Rio Grande CMC Monitoring – 2016 - 2022

Gross Alpha, Adjusted:

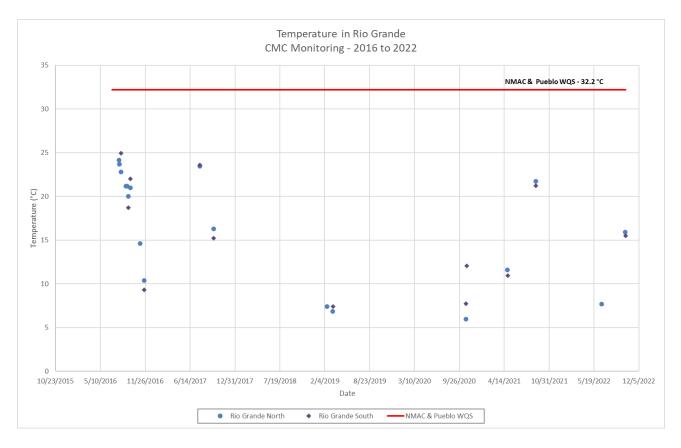
The October 6, 2022, Rio Grande South sample result exceeded the New Mexico and Pueblo of Isleta WQS for gross alpha, adjusted. The WQS for gross alpha, adjusted is the same value for both the NMAC 20.6.4 Water Quality Criterion and Pueblo of Isleta; the WQS of 15 pCi/L ("pCi/L" means picocuries per liter) is a general standard for the Pueblo of Isleta, and for New Mexico it is based on Domestic Water Supply and Livestock Watering designated uses. In surface water, the gross alpha, adjusted analyses may be affected by a high content of suspended load, particularly where sediment sources may be derived from granitic terrain; gross alpha, adjusted results may reflect the radioactivity of the natural elements in the sediment more than the surface water.

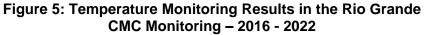
The October 6, 2022, Rio Grande South gross alpha, adjusted analytical results are detailed below; the units are in pCi/L:


- Rio Grande South CMC sample result for gross alpha, adjusted = 22.98 pCi/L
- Gross alpha, adjusted WQS at the Rio Grande South location = 15 pCi/L (NMAC 20.6.4 Water Quality Criterion for livestock watering and domestic water supply designated uses and general standard for Pueblo of Isleta)

This is the third time since 2016 that the analytical results from a CMC sample have had an exceedance in gross alpha, adjusted. The prior exceedance was reported for the September 2, 2021, Rio Grande South sample. The CMC will continue to closely evaluate this parameter in future samples. If additional exceedances occur, the CMC will discuss the results further and may consult NMED for further guidance.

Dissolved Oxygen and Temperature:


Two (2) of the water quality parameters are specifically worth mentioning in this memo because they are listed in the WSB MS4 Permit, Part I.C.1 – Special Conditions: dissolved oxygen and temperature. These parameters did not have any surface water quality exceedances during the FY 2023 wet season sampling.


Dissolved oxygen is a water quality concern in the Rio Grande if it is below 5 mg/L. None of the samples taken from the Rio Grande during the FY 2023 wet season monitoring had dissolved oxygen values below 5 mg/L. This provides the MS4s with specific monitoring data showing that stormwater did not cause or contribute to exceedances of applicable dissolved oxygen water quality standards in the Rio Grande from any of the CMC samples from 2016 to 2022. Refer to Figure 4 for CMC dissolved oxygen results and comparison to applicable WQSs.

Temperature is listed in the WSB MS4 Permit as a special condition (currently only applicable to the City of Albuquerque and AMAFCA). Past data submitted to EPA and NMED by the MS4 permittees have proven that stormwater discharges into the Rio Grande are not raising the Rio Grande temperature above the WQSs. The data collected during this FY 2023 wet season monitoring also supports this conclusion. All the temperature field readings taken in the Rio Grande during the CMC FY 2023 wet season were below 32.2°C (90°F), which is the WQS for the State of New Mexico and for the Isleta and Sandia Pueblos. Refer to Figure 5 for temperature results and comparison to applicable WQSs for all CMC samples taken upstream and downstream of the MRG MS4 area from 2016 to 2022.

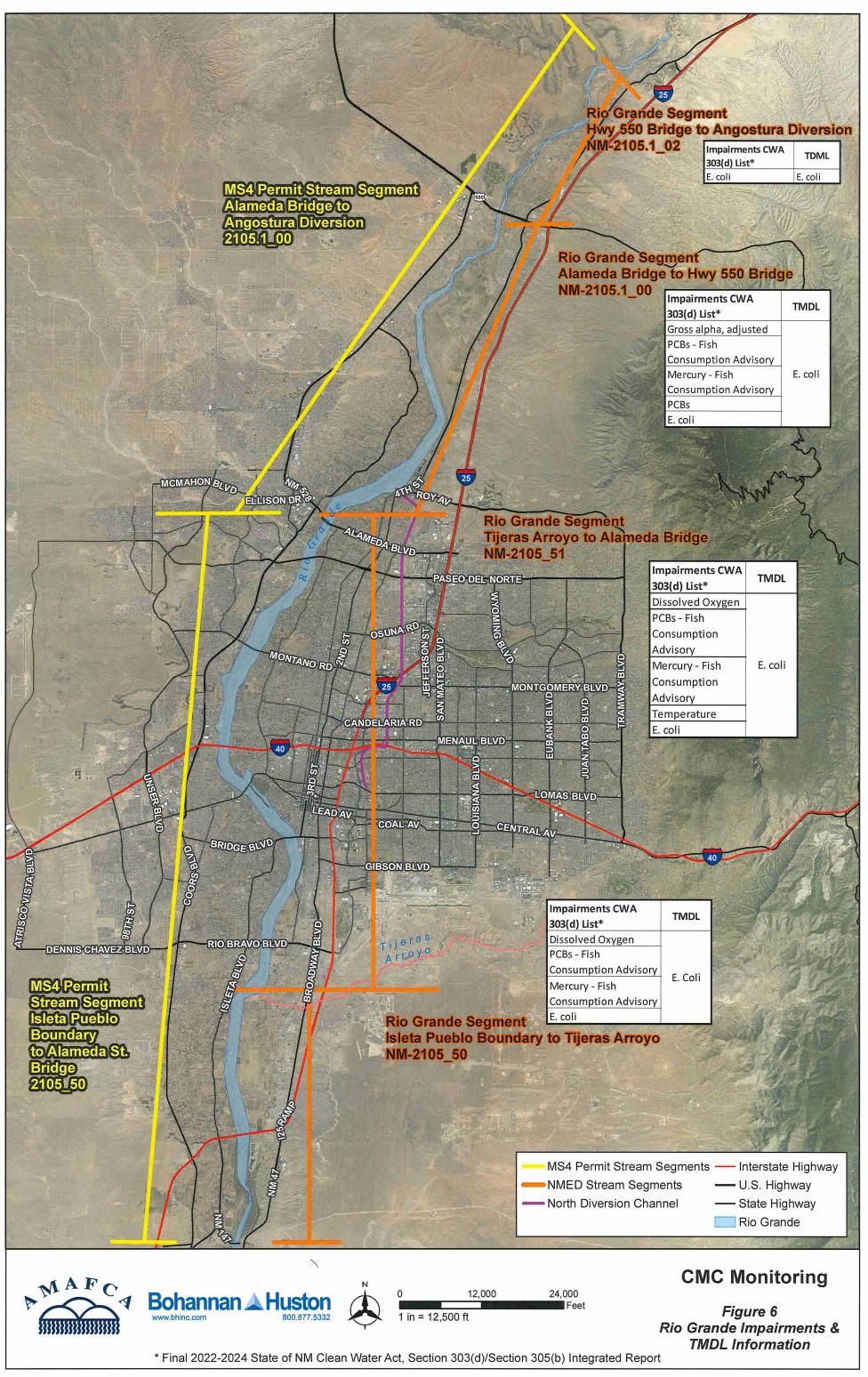
CMC FY 2023 Wet Season E. coli Loading Calculations and Waste Load Allocation (WLA)

Related to assessing the stormwater results, the E. coli loading was calculated and compared to the aggregate Total Maximum Daily Load (TMDL) Waste Load Allocation (WLA) for the CMC group. A TMDL is the maximum amount of a pollutant (E. coli in this case) that a water body (Rio Grande) can assimilate on a daily basis without violating applicable surface WQSs. The total TMDL for a stream segment consists of the multiple WLA for point sources, non-point sources, and natural sources, plus a margin of safety. The CMC MS4 allotted WLA was determined in the EPA Approved, Total Maximum Daily Load for the Middle Rio Grande Watershed, June 30, 2010, and subsequent communications with NMED. The WLA varies by flow condition in the Rio Grande and by stream segment.

E. coli loading calculations and comparison to the WLA follows the WSB MS4 Permit requirements in "Discharges to Water Quality Impaired Water Bodies with an Approved TMDL", Part I.C.2.b.(i).(c).B, Appendix B-Total Maximum Daily Loads (TMDLs) Tables of the WSB MS4 Permit, and the NMED guidance provided to the CMC. Attached to this memo is the WLA Calculation spreadsheet which steps through the E. coli loading calculations and assumptions comparing the calculated E. coli loading to the CMC aggregate WLA defined by NMED.

There are two (2) stream segments defined in the WSB MS4 Permit (Appendix B): Isleta Pueblo Boundary to Alameda Street Bridge (Stream Segment 2105_50) and Non-Pueblo Alameda Bridge to Angostura Diversion (Stream Segment 2105.1_00). These stream segments differ from NMED's current stream segments defined in the 2022-2024 State of New Mexico Clean Water Act Section 303(d)/Section 305(b) Integrated Report (NMED, April 2022). NMED currently has four (4) stream segments instead of the two (2) WSB MS4 stream segments. These various stream segment designations are shown in Figure 6, page 16.

The *NMED 303(d)/305(b) 2020-2022 Integrated Report* tables show the most recent assessment results, and currently all segments of the Rio Grande (Isleta to Angostura Diversion) are impaired for E. coli and have a TMDL for E. coli.


The E. coli daily loading associated with the CMC group and comparison to the NMED WLA was completed for the one (1) qualifying wet season storm event – October 5-6, 2022. For this event, the CMC obtained an E. coli sample in the Rio Grande at Alameda and used this to calculate the E. coli loading for the two (2) river segments. Refer to Table 5 for a summary of the WLA comparison results. A spreadsheet is attached to this memo that provides the detailed WLA calculations.

Date / Stream Segment	Daily Mean Flow (cfs)	Flow Conditions (cfs) range defined by NMED	CMC Daily E. coli Loading (CFU/day)	NMED WLA for CMC for Stream Segment and Flow Conditions	Loading Compared to WLA Potential Exceedance or Acceptable			
October 5-6, 2022 – Rio Grande North E. coli Concentration 10/5/2022 = 135 MPN (CFU/100 mL) Rio Grande at Alameda E. coli Concentration 10/5/2022 = 52 MPN (CFU/100 mL) Rio Grande South E. coli Concentration 10/6/2022 = <1 MPN (CFU/100 mL)								
Alameda to Angostura	146	Dry	0.00E+00	3.24E+10	WLA Acceptable			
Isleta to Alameda	165	Dry	0.00E+00	1.57E+09	WLA Acceptable			

 Table 5: Summary of CMC E. Coli Loading Compared to WLA for the CMC

As Table 5 illustrates, the calculated E. coli loading for the October 5-6, 2022 storm event for the northern segment (Alameda to Angostura) and the southern segment (Isleta to Almeda) of the Rio Grande was below the WLA for the CMC MS4s. This analysis used the mid-point E. coli sample result obtained in the Rio Grande at Alameda.

The WSB MS4 Permit implies that the WLA is a measurable goal for the MS4s related to E. coli. Based on extensive review of the EPA Approved, Total Maximum Daily Load (TMDL) for the Middle Rio Grande Watershed, June 30, 2010, this seems to be an unattainable goal for MS4s.

 $\label{eq:product} P:20230125 \label{eq:product} WR \label{eq:product} WR \label{eq:product} P:20230125 \label{eq:product} P:20230125 \label{eq:product} WR \label{eq:product} P:20230125 \label{eq:product} WR \label{eq:product} P:20230125 \label{eq:product} WR \label{eq:product} P:20230125 \label{eq:product} P:2023012$

Page 40 of the 2010 TMDL Report states, "It is important to remember that the TMDL is a planning tool to be used to achieve water quality standards...Meeting the calculated TMDL may be a difficult objective." The TMDL/WLA was calculated by NMED to meet the Pueblo (Sandia and Isleta) geometric mean maximum of 47 CFU/100 ml, which was done to be "protective of downstream waters" and "to provide an implicit margin of safety (MOS)". A single grab sample E. coli result meeting this very low geometric means WQSs will be very difficult for the MS4s to obtain.

The CMC members discussed the difficulty of using the WLA as a measurable goal with NMED on February 1, 2017. NMED explained that exceeding the WLA does not trigger enforcement. However, NMED strongly encouraged the MS4s to document what they are doing once they realize the WLA is potentially exceeded. The meeting on February 1, 2017, and the CMC discussion with NMED on February 16, 2017, demonstrate CMC members are working toward understanding the WLA. In addition, the CMC members began implementing a refinement to the sampling plan discussed with NMED by obtaining an E. coli sample in the Rio Grande at Alameda effective the FY 2018 wet season, as feasible. This demonstrates that the CMC is continuing to investigate the potential exceedances and make improvements to monitor E. coli in the Rio Grande.

Data Entry for Discharge Monitoring Reports

The WSB MS4 Permit entered Administrative Continuance in December 2019 when EPA Region 6 did not issue a new MS4 Permit before the current MS4 Permit's expiration date. Until a new MS4 Permit is issued, there are no compliance monitoring requirements for the CMC in the Rio Grande. As identified in the CMC Monitoring Plan, the WSB MS4 Permit required a minimum of seven (7) storm events be sampled at both the Rio Grande North and Rio Grande South locations. All MS4 Permit required samples have been obtained by the CMC and verified stormwater quality data from these required events have been submitted to the EPA using electronic Discharge Monitoring Report (DMR) forms. Data from the DMRs are uploaded to a comprehensive nationwide database that contains discharge data for facilities and other point sources that discharge directly to receiving streams. For this Task, BHI has not completed any data entry related to the EPA DMRs for the FY 2023 wet season.

Conclusions and Planning

During the FY 2023 wet season (July 1 to October 31, 2022), one (1) qualifying stormwater sample was obtained by the CMC. Lab results were received, and this data has been entered into the CMC Excel database. The lab data entered is marked in the spreadsheet as "V" (verified), and data V&V has been completed (refer to Attachment 2).

To summarize, monitoring results and E. coli loading calculations for the FY 2023 wet season show that:

The WSB MS4 Permit entered Administrative Continuance in December 2019 when U.S. Environmental Protection Agency (EPA) Region 6 did not issue a new MS4 Permit before the current MS4 Permit's expiration date. Until a new MS4 Permit is issued, there are no compliance monitoring requirements for the CMC in the Rio Grande. All MS4 Permit required samples have been obtained by the CMC, as well several samples collected during Administrative Continuance, including the one (1) sample obtained in the FY 2023 wet season, as reported in this memo.

- For the FY 2023 wet season, 19 of the 33 parameters tested were not detected in any of the Rio Grande North or South samples.
- Several key parameters all met the applicable WQSs, as they have for all the CMC samples to date:
 - All dissolved oxygen results were greater than 5 mg/L (minimum WQS).
 - All temperature results were less than 32.2°C (maximum WQS).
- The PCB results were below the New Mexico Surface WQSs and Pueblo of Isleta Surface WQSs for designated uses including drinking water, wildlife habitat, acute aquatic life, and chronic aquatic life. However, the Rio Grande South CMC sample from October 6, 2022, was above the Pueblo of Isleta and New Mexico human health criteria (based on fish consumption only) WQSs for surface waters.
- The October 6, 2022, Rio Grande South sample result exceeded the New Mexico Surface WQSs and Pueblo of Isleta Surface WQSs (15 pCi/L) for gross alpha, adjusted. This is the third time since 2016 that the analytical results from a CMC sample have had an exceedance in gross alpha, adjusted. The CMC will continue to closely evaluate this parameter in future samples.
- The calculated E. coli loading for the October 5-6, 2022 storm event for the northern segment (Alameda to Angostura) and the southern segment (Isleta to Almeda) of the Rio Grande was below the WLA for the CMC MS4s. This analysis used the mid-point E. coli sample result obtained in the Rio Grande at Alameda.
 - The E. coli lab result for the Rio Grande South location is the lowest value that the CMC has seen reported in the Rio Grande at this location. AMAFCA called HEAL to discuss this result and verify that the reported result was correct.
 - Sources for the E. coli loading measured in the river are not solely attributable to the CMC MS4 members; the E. coli loading calculations serve to provide a reasonable estimate of the CMC contribution to the measured E. coli loading.

For planning purposes for the CMC members, the FY 2023 dry season CMC monitoring, if a sample is obtained, will be summarized by BHI for the CMC in a dry season memo.

SG/ab

Attachments:

Attachment 1 – DBS&A Field Data & Hall Environmental Analysis Laboratory Reports with BHI Notes for FY 2023 Wet Season

Attachment 2 – FY 2023 Wet Season Completed Data Verification and Validation (V&V) Forms

Spreadsheets Included Separately:

E. coli Loading and Comparison to Waste Load Allocation (WLA) Excel Spreadsheet Excel CMC Spreadsheet with FY 2023 Wet Season Stormwater Quality Monitoring Results

ATTACHMENT 1

DBS&A FIELD DATA & HALL ENVIRONMENTAL ANALYSIS LABORATORY REPORTS WITH BHI NOTES FOR FY 2023 WET SEASON

CMC Water Quality Results Database Date: December 29, 2022

Summary of Lab Results for CMC samples for FY 2023 Wet Season

induction indu				Rio Grande	- North	T	I	Rio Grande - S	outh - At Isleta I	Dam		Rio Grande - Alame	da Bridge (E. co	li Only Samp	ples)
independenci ind and and <td< th=""><th>Parameter</th><th></th><th>Analysis Method</th><th></th><th>SAMPLE - EXTRA NORTH Collection Date 10/5/2022 Wet Season</th><th>Qualifier</th><th>Check compared to Water Quality Criterion</th><th></th><th>SAMPLE - EXTRA SOUTH Collection Date 10/6/2022 Wet Season</th><th>Qualifier</th><th>to Water Quality</th><th>Provisional or Verified</th><th>SAMPLE - EXTRA ALAMEDA Collection Date 10/5/22 Wet Season</th><th>Qualifier C Wa</th><th>heck compared to .ter Quality Criterion</th></td<>	Parameter		Analysis Method		SAMPLE - EXTRA NORTH Collection Date 10/5/2022 Wet Season	Qualifier	Check compared to Water Quality Criterion		SAMPLE - EXTRA SOUTH Collection Date 10/6/2022 Wet Season	Qualifier	to Water Quality	Provisional or Verified	SAMPLE - EXTRA ALAMEDA Collection Date 10/5/22 Wet Season	Qualifier C Wa	heck compared to .ter Quality Criterion
And And </td <td>Total Suspended Solids (TSS)</td> <td></td> <td></td> <td></td> <td>29</td> <td></td> <td></td> <td>v</td> <td>890</td> <td>D</td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	Total Suspended Solids (TSS)				29			v	890	D	-				
index spaceindex bitindex bit </td <td>Total Dissolved Solids (TDS)</td> <td>mg/L</td> <td>SM2540C MOD</td> <td>v</td> <td>195</td> <td></td> <td>ОК</td> <td>v</td> <td>265</td> <td>D</td> <td>ОК</td> <td></td> <td></td> <td></td> <td></td>	Total Dissolved Solids (TDS)	mg/L	SM2540C MOD	v	195		ОК	v	265	D	ОК				
maximum max max max max max max max addition 16 0 <td>Chemical Oxygen Demand (COD)</td> <td>mg/L</td> <td>EPA 410.4</td> <td>v</td> <td>22.3</td> <td> </td> <td></td> <td>v</td> <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Chemical Oxygen Demand (COD)	mg/L	EPA 410.4	v	22.3			v	ND						
And a product of the second	Biochemical Oxygen Demand (BOD ₅)	mg/L	SM5210B		Not provided										
ind ind <td>Dissolved Oxygen (DO)</td> <td>mg/L</td> <td>FIELD</td> <td>V</td> <td>5.79</td> <td></td> <td>ОК</td> <td>v</td> <td>6.24</td> <td></td> <td>ОК</td> <td>V</td> <td>5.58</td> <td></td> <td>ОК</td>	Dissolved Oxygen (DO)	mg/L	FIELD	V	5.79		ОК	v	6.24		ОК	V	5.58		ОК
image: second	Oil and Grease (N-Hexane Extractable Material)	mg/L	EPA 1664A		ND		ОК	v	ND		ок				
Image: sector of the sector	E. coli	MPN (CFU/100 mL)	SM 9223B Fecal Indicator	v	135		>WQ Standard	v	<1		ок	v	52		ок
Internation Image	рН	S.U.	FIELD	v	8.24	н	ОК	v	8.02	н	ок	V	7.6		ОК
inversion n	Total Kjedahl Nitrogen (TKN)			_											
answer, and	Nitrate plus Nitrite			_						-					
integra	Dissolved Phosphorous	mg/L	EPA 365.1, filtered sample	v	NU	U	-	v	ND	D	-				
Instanton Not Instanton Not	Ammonia (mg/L as N)	mg/L	SM 4500 NH3	v	ND		ок	v	ND		ок				
Normal and the set of t	Total Nitrogen	mg/L		V	ND		ОК	v	1.70		ок				
Mandel Matter and Advagand Dec Dec <thdec< th=""> Dec Dec <</thdec<>	Total Phosphorous	mg/L	EPA 365.1	v	ND	D		v	0.97	D	-				
Independence Main Main </td <td>PCBS - 0.000064 (Method 1668A - sum of all congeners)</td> <td>μg/L</td> <td>EPA 1668</td> <td>v</td> <td>0.00013</td> <td>I</td> <td>ОК</td> <td>v</td> <td>0.0011</td> <td>J</td> <td>>WQ Standard</td> <td></td> <td></td> <td></td> <td></td>	PCBS - 0.000064 (Method 1668A - sum of all congeners)	μg/L	EPA 1668	v	0.00013	I	ОК	v	0.0011	J	>WQ Standard				
includy<	Gross Alpha, Adjusted	pCi/L	EPA 900.0	v	0.895 ± NA		ок	v	22.98 ± NA		>WQ Standard				
Aughbon bunchesAughbon aughbon 	Tetrahydrofuran	μg/L	EPA 8260 C	v	ND			v	ND						
int int <td>Benzo[a]pyrene</td> <td>μg/L</td> <td>EPA 625</td> <td>v</td> <td>ND</td> <td></td> <td>ОК</td> <td>v</td> <td>ND</td> <td></td> <td>ок</td> <td></td> <td></td> <td></td> <td></td>	Benzo[a]pyrene	μg/L	EPA 625	v	ND		ОК	v	ND		ок				
ownerup/LUPLAGEVNBINOPCVNBIN<	Benzo[b]fluoranthene (other name: 3,4-Benzofluoranthene)	μg/L	EPA 625	v	ND		ОК	v	ND		ОК				
index[1] dipyrat index[1] dipyrat <t< td=""><td>Benzo(k)fluoranthene</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Benzo(k)fluoranthene														
Image: second	Chrysene			_											
Image: second secon															
image image <t< td=""><td>Dieldrin</td><td>μg/L</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Dieldrin	μg/L		_											
image image <t< td=""><td>Pentachlorophenol</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Pentachlorophenol			_											
Image: binometry in the state in there in therestate in the state in the state in the state in the															
Densero(A)-Instruction μ_R/L IFA 52 V ND OK V ND OK V ND OK V ND OK OK OK OK Image: Normal sector Image: Normal sector Image: Normal sector Image: Normal sector ND OK ND OK OK OK OK OK Image: Normal sector Image: No	Benzo(a)anthracene			_											
Image: Normal (Measarient) $\mu_{\mu/L}$ 3500C - 2011 V ND ND ND OK OK Image: Normal Norma Normal Normal Norma Normal Normal Normal Normal Normal Norma No	Dibenzoturan Dibenzo(a,h)anthracene			_											
Image: series of the series	Chromium VI (Hexavalent)			_											
Image: Signer space spa	Dissolved Copper	μg/L	EPA 200.8	v	1.1		ОК	v	ND		ОК				
ethylphthalate, DEHP) - 2.2 umhos/cm FIELD V 200 Conductivity Conductivity <td>Dissolved Lead</td> <td>μg/L</td> <td>EPA 200.8</td> <td>v</td> <td>ND</td> <td></td> <td>ОК</td> <td>v</td> <td>ND</td> <td></td> <td>ОК</td> <td></td> <td></td> <td></td> <td></td>	Dissolved Lead	μg/L	EPA 200.8	v	ND		ОК	v	ND		ОК				
envinescriptional conductivity umbos/cm Field V 290 Conductivity V 395 Conductivity V 275 Conductivity Temperature °C Field V 15.9 OK V 15.5 OK V 18.0 OK V 18.0 OK V 10.0	Bis (2-ethyhexyl) Phthalate (other names: Di(2-	ug/I	EPA 625	v	ND		OK	v	ND		ОК				
Temperature Mg/L SM2340B V 120 M <td></td> <td>v</td> <td>275</td> <td></td> <td></td>												v	275		
	Temperature			_											
Mercury μg/l	Hardness (as CaCO₃)	mg/L	SM2340B	v	120		-	v	280						
	Mercury	μg/I													

 Data Verification/Validation and Qualifier Notes:

 (R) The sample results are unusable because certain criteria were not met. The analyte may or may not be present in the sample.

 (H) Sample holding time exceeded.

 (J) The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

 (D) Sample was diluted by Lab due to matrix

 (U) Analyte was analyzed for, but not detected above the specified detection limit.

 Notes:

 1. Wet Season monitoring period - July 1 to October 31 and Dry Season monitoring period - November 1 to June 30 according to the Watershed Based MS4 Permit NMR04A000.

 mean monthly flow of 100 cfs, monthly average concentration for TDS 1,500 mg/l or less, sulfate 500 mg/l or less, and chloride 250 mg/l or less.

 3. Aquatic life criteria for metals are expressed as a function of total hardness (mg/l as 4. According to NMAC 20.6.4, E. coli bacteria for Primary Contact - monthly geometric 5. Water quality criterion for metals is bacteria on dissolved metals, NMAC 20.6.4.900.1 and individual sample results compared to acute toxicity values.

 6. HEAL lab method: SM 9223B Fecal Indicator. Note - lab method for units of MPN/100 ml, lab report uses units CFU/100 ml, for this analysis assuming two units are equivalent

ND - analyte not detected above the laboratory method detection limit NA - not analyzed Hatching also indicates that parameter was not analyzed

National recommended WQ criteria Human Health https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table

			Samplers Chad Johannesn Sam Fire						
CMC Sampling Data Sheet									
Site Identification:	Rio Grande	North ;	Angostura Diversion Dam						
Notes:			5						
Notes:									

Full Suite Sample Date and Time:	10/5/22	1215	
Full Sample Identification: RG	North- 20	221005	
QC Samples: Duplicate / None	QC Sample ID:		
QC samples require a DIFFERENT so QC Sample time:	ample time than the e	environmental sample.	

Full Suite Collection Point	: Divers	in structure			
Full Suite Sample Volume:	8921	Collection Time Start:	1125	End:	1210

Field Parameters for each 2-gallon grab

Time	Temp (°C)	pН	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)
1125	16.4	8.56	334	6.5.6	66.6
1140	16.8	7.25	297	5.90	60.7
1155	16.8	8.01	295	3.42	34.6
1210	14.9	8.27	29]	6.9]	88.2
1215	15.9	8.24	290	5.79	59.6
	1125 1140 1155 1210 1215	Time(°C)112516.4114016.8115516.8121014.9121515.9	Time(°C)pH112.516.48.56114016.87.25115516.88.0112.1014.98.2712.1515.98.24	TimeTemp (°C) pH Conductance (μ S/cm)112.516.48.56334114016.87.25297115516.88.012.9512.1014.98.272.9112.1515.98.242.90	TimeTemp (°C)pHConductance Conductance (μ S/cm)Oxygen (mg/L)112.516.48.563346.56114016.87.252975.90115516.88.012.453.4212.1014.98.272.918.9112.1515.98.242.905.79

Analytical - see 2021 COC table

 $\overline{7}$

Site Photo

Samplers Chad Juhanness Sam Fire CMC Sampling Data Sheet

Site Identification:

Rio Grande @ Isleta

Notes:

Full Suite Sample Date and Time:	10/6/22	0905	
Full Sample Identification:	- South - :	2022 1006	
QC Samples: Duplicate / None	QC Sample II);	
QC samples require a DIFFERENT sa QC Sample time:	mple time than th	e environmental sample.	

Full Suite Collection Point :	Isleta	diversion st	schure			
Full Suite Sample Volume:	8901	Collection Time Start:	0815	End:	0900	

Field Parameters for each 2-gallon grab

Time	Temp (°C)	рН	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)
0815	15.9	8.51	423	5.43	54.7
0830	15.8	7.27	399	5.95	59.3
०४५८	15.6	7.97	394	6.08	60.7
0900	15.7	10.8	396	6.21	62.0
0905	15.5	8.02	395	6. ZY	62.1
	0815 0830 0845 0900 0905	Time (°C) 0815 15.9 0830 15.8 0845 15.6 0900 15.7 0905 15.5	Time(°C)pH081515.98.51083015.87.27084515.67.97090015.78.01090515.58.02	TimeTemp (°C)pHConductance (μS/cm)081515.98.5142.3083015.87.2739.9084515.67.973.94090015.78.013.96090515.58.023.95	TimeTemp (°C)pHConductance Conductance (µS/cm)Oxygen (mg/L)081515.98.5142.35.43083015.87.2739.95.95084515.67.973.946.08090015.78.013.966.21

Analytical - see 2021 COC table

Site Photo Sample Photo

				Sar	nplers <u>Chad</u> San	Johennesn
		CMC	Sam	oling Data S	heet	F.Ie
Site Identifica	ation: R	in Gra	inde a	t Alamed	~	
Notes:					~	
	ample Date a		10/5	122 1340 a- 20221		
QC Samples	12 6.00 7.00	te / None		ample ID:	005	
	require a DIF			than the environme	ntal sample.	
Full Suite C	ollection Poi	int:A	lamede	- bridge		-
Full Suite Sa	mple Volume	: 19	al c	Collection Time Start:	1330 End:	1340
Field Param	eters for eac	, ch 2-gallon	grab			à
Grab	Time	Temp (°C)	pН	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)
1						
2	*					
3						
4						
Composite	1340	18.0	7.60	275	5.58	57.9
Turbid Wa	ter 🏹 Color	BINN	45 Solid	s 🖾 Oil/Sheen 🛛	⊐Foam ⊡Odor_	

Analytical - see 2021 COC table

Site Photo

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

October 10, 2022

Patrick Chavez AMAFCA 2600 Prospect Ave NE Albuquerque, NM 87107 TEL: (505) 884-2215 FAX: <u>10/5/2022</u>: Alameda and Rio Grande North E.coli only samples

RE: CMC Wet 22

OrderNo.: 2210242

Dear Patrick Chavez:

Hall Environmental Analysis Laboratory received 2 sample(s) on (10/5/2022) for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 2210242

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/10/2022

CLIENT:	JENT: AMAFCA Client Sample ID: RG North-20221005										
Project:	CMC Wet 22		Collection Date: 10/5/2022 12:05:00 PM								
Lab ID:	2210242-001	Matrix: A	Matrix: AQUEOUS Received Date: 10/5/2022 2:20:00 PM								
Analyses		Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID		
	FECAL INDICATOR: E. CO		MDL	RL	Qual	Units	DF	Date Analyzed Analyst: dr			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 1 of 2

Analytical Report Lab Order 2210242

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/10/2022

CLIENT	ENT: AMAFCA Client Sample ID: RG Alameda-20221005									
Project:	CMC Wet 22		Collection Date: 10/5/2022 1:40:00 PM							
Lab ID:	2210242-002	Matrix: AC	Matrix: AQUEOUS Received Date: 10/5/2022 2:20:00 PM							
Analyses		Result	MDL	RL (Qual Units	DF	Date Analyzed	Batch ID		
SM 9223B FECAL INDICATOR: E. COLI MPN Analyst: dm								ns		
0111 32231	DI LOAL INDIOATOR. L.						,			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference S

В Analyte detected in the associated Method Blank

Е Estimated value

J Analyte detected below quantitation limits Sample pH Not In Range

Р

RL Reporting Limit

HALL ENVIRONMENTAL ANALYSIS LABORATORY	TEL: 505-345-	ntal Analysis Labo 4901 Hawki Albuquerque, NM 3975 FAX: 505-345 w.hallenvironmenta	ns NE 87109 Sai -4107	mple Log-In Check List
Client Name: AMAFCA	Work Order Num	ber: 2210242		RcptNo: 1
Received By: Juan Rojas 1	0/5/2022 2:20:00	PM	(Juan ang)	
Completed By: Cheyenne Cason 1 Reviewed By: 10-5-22 @ 15	0/5/2022 2:45:18 9	РМ	Chul	
Chain of Custody				
1. Is Chain of Custody complete?		Yes 🔽	No 🗌	Not Present
2. How was the sample delivered?		Client		
Log In				
3. Was an attempt made to cool the samples?		Yes 🔽	No 🗌	
4. Were all samples received at a temperature of	>0° C to 6.0°C	Yes 🗌	No 🔽	
5	Samples w	ere collected the	same day an	
5. Sample(s) in proper container(s)?		Yes 🗹	No	
6. Sufficient sample volume for indicated test(s)?		Yes 🔽	No 🗌	
7. Are samples (except VOA and ONG) properly pr	eserved?	Yes 🗸	No 🗌	
8. Was preservative added to bottles?		Yes	No 🗹	NA 🗌
9. Received at least 1 vial with headspace <1/4" for	AQ VOA?	Yes	No 🗌	NA 🔽
0. Were any sample containers received broken?		Yes	No 🔽	
				# of preserved
1. Does paperwork match bottle labels?		Yes 🔽	No 🗌	bottles checked for pH:
(Note discrepancies on chain of custody)		_	_	(<2 or >12 unless noted)
2. Are matrices correctly identified on Chain of Cus	tody?	Yes 🖌	No 🗌	Adjusted?
3. Is it clear what analyses were requested?		Yes 🖌	No 🗌	100 10105
 Were all holding times able to be met? (If no, notify customer for authorization.) 		Yes 🗹	No 🗌	Checked by: KPG 10.05.
pecial Handling (if applicable)				
15. Was client notified of all discrepancies with this	order?	Yes	No 🗌	NA 🗹
Person Notified:	Date:	r		
By Whom:	Via:	eMail 🗌 P	hone 🗌 Fax	In Person
Regarding:				
Client Instructions:				
6. Additional remarks:				
7. Cooler Information				
Cooler No Temp °C Condition Seal Ir	ntact Seal No	Seal Date	Signed By	
1 15.1 Good Not Pre	sent		-	

	Chair	1-of-C	ustody Record	Turn-Aroun	d Time:		٦.												
Client		APCA		Standard				HALL ENVIRONMENTAL ANALYSIS LABORATORY											
Mailin	~ A d d u a			Project Name: CMC - Wet 22															
	g Addres	SS:		CMC	- Wet ?	22	www.hallenvironmental.com												
		61 - 2 ⁴		Project #:			4901 Hawkins NE - Albuquerque, NM 87109												
Phone				1			Tel. 505-345-3975 Fax 505-345-4107 Analysis Request												
email	or Fax#:	pchair	clamatica.org	Amafca.org Project Manager:								_	and the second se	SKe	and the local division in which the	CONTRACTOR OF THE OWNER.			
QA/QC	QA/QC Package:				ik Chav	22-	(8021)	/ MRO)	S		S		SO4		sent	-6			- 8
Sta Sta	Standard Level 4 (Full Validation)				ve Ondo		l v	N / 0	PCB's		SIM		PO4,		Abs	10	-	1.11	
	litation:		ompliance	Sampler: C	Johannes	lew	TMB	DR(=	8270SIMS		NO ₂ , F		sent	enumerete			
	and the second s	□ Othe	r	On Ice:	Pres	□ No	-	102	s/80	04.	5			A	Pres	ame			
	D (Type)	T	1	# of Coolers:		- 1	MTBE	(GF	cide	g po	310	erais	S S		l E	eni			
				Cooler Temp	D(including CF):	5.1-0=15.1 (°C)	Σ	150	estic	leth	y 8.		, 'S	emi	olifo	1			
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL NO. 2210242	BTEX /	TPH:8015D(GRO / DRO	8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310		CI, F, Br, NO ₃ , 8260 (V/OA)	8270 (Semi-VOA)	Total Coliform (Present/Absent)	Ecoli			
10-5-21	+ 1215	AQ	RG North- 2022 1005			COL				<u> </u>				0 00	╞	~		+	+
10-5-22	1340	AQ	RG Alameda - 2022100.	5		and the second se			-+	\rightarrow			+		-	\wedge	\rightarrow		
						COL			-+		+		_			Х			+
								\rightarrow	_	_			-						
										_			1						
	-																		
												\top					+		
										-		+	+				+	+-	+
Data	-	N										+				-	+	+	++-
Date: 1-5-72	Time:	Relinquishe	d by:	Received by:	Via:	Date Time	Rem	arks:											
		Relinquishe	dby:		2000 1	0/5/22 14:20													
		i veninguistie	daà.	Received by:	Via:	Date Time													

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

November 23, 2022

Patrick Chavez AMAFCA 2600 Prospect Ave NE Albuquerque, NM 87107 TEL: (505) 884-2215 FAX: 10/5/2022: Rio Grande North and 10/6/2022: Rio Grande South

RE: CMC Wet FY23

OrderNo.: 2210315

Dear Patrick Chavez:

Hall Environmental Analysis Laboratory received 3 sample(s) on 10/6/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Field Parameters: - <u>Rio Grande North</u> Temp = 15.9°C pH = 8.24 Conductivity = 290 uS/cm Dissolved Oxygen = 5.79 mg/L - <u>Rio Grande South</u> Temp = 15.5°C pH = 8.02 Conductivity = 395 uS/cm Dissolved Oxygen = 6.24 mg/L

Analytical Report Lab Order: 2210315

Hall Envi	ronmental Analysis Laboratory, Inc.	Date Reported: 11/23/2022
CLIENT:	AMAFCA	Client Sample ID: R6 North-20221005
Project:	CMC Wet FY23	Collection Date: 10/5/2022 12:15:00 PM
Lab ID:	2210315-001A	Matrix: Aqueous
	D	

Hall Environmental Analysis Laboratory, Inc.

Result	RL	Qual Units	DF	Date Analyzed	Batch ID
				Anal	yst: JME
ND	0.10	µg/L	1	10/17/2022 12:51:12	PM 70767
94.3	40.9-111	%Rec	1	10/17/2022 12:51:12	PM 70767
64.3	15-107	%Rec	1	10/17/2022 12:51:12	PM 70767
	ND 94.3	ND 0.10 94.3 40.9-111	ND 0.10 μg/L 94.3 40.9-111 %Rec	ND 0.10 μg/L 1 94.3 40.9-111 %Rec 1	Anal ND 0.10 µg/L 1 10/17/2022 12:51:12 94.3 40.9-111 %Rec 1 10/17/2022 12:51:12

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- В Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value Е Analyte detected below quantitation limits
- J Р Sample pH Not In Range
- RL Reporting Limit

Hall Envi	ronmental Analysis	Laboratory, Inc	2.			Lab Order: 22103 Date Reported:	15 11/23/2022	
CLIENT:	AMAFCA		Cl	ient Sample I	D: Ré	5 North-20221005		
Project:	CMC Wet FY23		Collection Date: 10/5/2022 12:15:00 PM					
Lab ID:	2210315-001D			Matri	ix: Ac	queous		
Analyses	-	Result	RL	Qual Units	DF	Date Analyzed	Batch ID	
	D 1664B					Ana	lyst: SMS	
N-Hexane Extr	actable Material	ND	9.40	mg/L	1	10/18/2022 6:18:00 I	PM 70825	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

Qualifiers:

D Sample Diluted Due to Matrix

- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- В Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value Е Analyte detected below quantitation limits
- J Sample pH Not In Range Р
- RL Reporting Limit

Lab Order: 2210315

Date Reported: 11/23/2022

Hall Environmental	Analysis	Laboratory, Inc.

AMAFCA

CMC Wet FY23

CLIENT:

Project:

Client Sample ID: R6 North-20221005 Collection Date: 10/5/2022 12:15:00 PM Matrix: Aqueous

Lab ID:	2210315-001E			conce	Matri	x: Aq	ueous	
Analyses	<u>.</u>	Result	RL	Qual	Units	DF	Date Analyzed	Batch ID
ЕРА МЕТНО	D 300.0: ANIONS						Analy	st: JTT
Nitrogen, Nitri	te (As N)	ND	0.50		mg/L	5	10/6/2022 11:59:13 PI	M A91618
Nitrogen, Nitra	ate (As N)	ND	0.50		mg/L	5	10/6/2022 11:59:13 PI	M A91618
SM2540C MC	DD: TOTAL DISSOLVED SOLIDS						Analy	st: SNS
Total Dissolve	ed Solids	195	20.0		mg/L	1	10/12/2022 8:50:00 AI	M 70696
SM 4500 NH3	3: AMMONIA						Analy	st: EKM
Nitrogen, Amr	nonia	ND	1.0		mg/L	1	10/21/2022 1:24:00 PI	M R91993
SM4500-H+B	/ 9040C: PH						Analy	st: JTT
рН		8.24		Н	pH units	1	10/10/2022 3:56:29 PI	M R91722
EPA METHO	D 365.1: TOTAL PHOSPHOROUS						Analy	st: CJS
Phosphorus,	Total (As P)	ND	0.25	D	mg/L	1	10/25/2022 3:03:00 PI	VI 71023
SM 4500 NO	RG C: TKN						Analy	st: EKM
Nitrogen, Kjel	dahl, Total	ND	1.0		mg/L	1	10/24/2022 10:19:00 #	AM 70981
SM 2540D: T	SS						Analy	st: KS
Suspended S	olids	29	4.0		mg/L	1	10/10/2022 3:18:00 PI	M 70679

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

D Sample Diluted Due to Matrix

- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- В Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value Е
- Analyte detected below quantitation limits J Р Sample pH Not In Range

RL Reporting Limit

		_					Lab Order: 22103	15
Hall Envi	ronmental Analysis Labo	oratory, Inc					Date Reported:	11/23/2022
CLIENT:	AMAFCA		Cl	ient S	ample I	D: R6	North-20221005	
Project:	CMC Wet FY23	Collection Date: 10/5/2022 12:15:00 PM						
Lab ID:	2210315-001F	Matrix: Aqueous						
Analyses	-	Result	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHO	0 365.1: TOTAL PHOSPHOROUS						Ana	lyst: CJS
Phosphorus, T	otal (As P)	ND	0.25	D	mg/L	1	10/25/2022 3:04:00	PM 71023
Dissolved p	phosphorous							

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

Qualifiers:

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Date Reported: 11/23/2022

Analyst: VP

70811

Lab Order: 2210315

10/14/2022 5:58:24 PM

CLIENT:	AMAFCA	Client Sample ID: R6 North-20221005 Collection Date: 10/5/2022 12:15:00 PM Matrix: Aqueous					
Project: Lab ID:	CMC Wet FY23 2210315-001G						
Analyses		Result	RL (Qual Units	DF	Date Analyzed	Batch ID
SM2340B: HA	ARDNESS					Ana	yst: VP
Hardness as C	CaCO3	120	6.6	mg/L	1	10/14/2022 2:05:00 I	PM R91819

39

6.8

1.0

Hall Environmental Analysis Laboratory, Inc.

EPA METHOD 200.7: METALS

Calcium

Magnesium

1.0 mg/L 1 10/14/2022 5:58:24 PM 70811

1

mg/L

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S $\hfill \%$ Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

JAnalyte detected below quantitation limitsPSample pH Not In Range

RL Reporting Limit

Page 5 of 25

Analytical Report Lab Order: 2210315

10/18/2022 1:04:27 PM

10/18/2022 1:04:27 PM

A91883

A91883

Hall Envi	ronmental Analysis I	Laboratory, Inc.	Date Reported: 11/23/2							
CLIENT:	AMAFCA		Client Sample ID: R6 North-20221005							
Project:	CMC Wet FY23		Collection Date: 10/5/2022 12:15:00 PM							
Lab ID:	2210315-001N		Matrix: Aqueous							
Analyses	_	Result	RL Qual	Units	DF	Date Analyzed	Batch ID			
EPA 200.8: D	DISSOLVED METALS					Ana	alyst: bcv			

0.0010

0.00050

mg/L

mg/L

1

1

0.0011

ND

Hall Environmental Analysis Laboratory, Inc

Copper

Lead

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

Qualifiers:

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

- В Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value Е Analyte detected below quantitation limits J
- Р Sample pH Not In Range
- RL Reporting Limit

Analytical Report Lab Order: 2210315

Hall Environmental	Analysis	Laboratory,	Inc.
	•		

AMAFCA

CMC Wet FY23

2210315-002A

CLIENT:

Project:

Lab ID:

Date Reported: 11/23/2022

Client Sample ID: R6 South-20221006 Collection Date: 10/6/2022 9:05:00 AM Matrix: Aqueous

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8081: PESTICIDES					Anal	yst: JME
Dieldrin	ND	0.10	µg/L	1	10/17/2022 1:04:20 I	PM 70767
Surr: Decachlorobiphenyl	96.8	40.9-111	%Rec	1	10/17/2022 1:04:20	PM 70767
Surr: Tetrachloro-m-xylene	76.2	15-107	%Rec	1	10/17/2022 1:04:20	PM 70767

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

Qualifiers:

D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

							Lab Order: 2210	315
Hall Envi	ronmental Analysis Lab	oratory, In	c.				Date Reported:	11/23/2022
CLIENT:	AMAFCA		C	ient Sa	ample II): R6	South-20221006	5
Project:	CMC Wet FY23	Collection Date: 10/6/2022 9:05:00 AM						
Lab ID:	2210315-002B				Matrix	x: Aq	ueous	
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	Batch ID
SM 9223B FE	CAL INDICATOR: E. COLI MPN						An	alyst: dms
E. Coli		<1	1.000		MPN/100	1	10/7/2022 5:05:00	PM 70671

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

Qualifiers:

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

- В Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value Е
- Analyte detected below quantitation limits J

Р Sample pH Not In Range RL Reporting Limit

Uoll Envi	ronmontal Analysis	I abaratary In				Lab Order: 22103		
	ronmental Analysis	Laboratory, Inc				Date Reported:	1/23/2022	
CLIENT:	AMAFCA		Client Sample ID: R6 South-20221006					
Project:	CMC Wet FY23	Collection Date: 10/6/2022 9:05:00 AM						
Lab ID:	2210315-002D			Matri	ix: A	queous		
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch ID	
	D 1664B					Ana	yst: SMS	
N-Hexane Extractable Material		ND	9.50	mg/L	1	10/18/2022 6:18:00	PM 70825	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

Qualifiers:

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

- В Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits Sample pH Not In Range

Р

RL Reporting Limit

Date Reported: 11/23/2022

Lab Order: 2210315

Hall Environmental Analysis Laboratory, Inc.

AMAFCA

CMC Wet FY23

CLIENT:

Project:

Client Sample ID: R6 South-20221006 Collection Date: 10/6/2022 9:05:00 AM

Lab ID:	2210315-002E	Matrix: Aqueous									
Analyses	-	Result	RL	Qual	Units	DF	Date Analyzed	Batch ID			
EPA METHO	D 300.0: ANIONS						Analy	st: JTT			
Nitrogen, Nitri	te (As N)	ND	0.50		mg/L	5	10/7/2022 1:16:26 AM	A91618			
Nitrogen, Nitra	ate (As N)	ND	0.50		mg/L	5	10/7/2022 1:16:26 AM	A91618			
SM2540C MC	DD: TOTAL DISSOLVED SOLIDS						Analy	st: SNS			
Total Dissolve	d Solids	265	100	D	mg/L	1	10/12/2022 8:50:00 A	M 70696			
SM 4500 NH3	3: AMMONIA						Analy	st: EKM			
Nitrogen, Amr	nonia	ND	1.0		mg/L	1	10/21/2022 1:24:00 PI	M R91993			
SM4500-H+B	/ 9040C: PH						Analy	st: JTT			
pН		8.09		Н	pH units	1	10/10/2022 4:00:35 Pl	M R91722			
EPA METHO	D 365.1: TOTAL PHOSPHOROUS						Analy	st: CJS			
Phosphorus,	Total (As P)	0.97	0.25	D	mg/L	1	10/25/2022 3:06:00 PI	V 71023			
SM 4500 NO	RG C: TKN						Analy	st: EKM			
Nitrogen, Kjelo	dahl, Total	1.7	1.0		mg/L	1	10/24/2022 10:19:00 /	AM 70981			
SM 2540D: T	SS						Analy	st: KS			
Suspended Se	olids	890	20	D	mg/L	1	10/10/2022 3:18:00 Pl	M 70679			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

- В Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value Е Analyte detected below quantitation limits
- J Sample pH Not In Range Р
- RL Reporting Limit

Analytical Report	
Lab Order: 2210315	

Hall Envi	ronmental Analysis Labo	oratory, Inc	•				Date Reported: 1	1/23/2022
CLIENT:	AMAFCA		Cl	ient Sa	mple I	D: R6	South-20221006	
Project:	CMC Wet FY23	Collection Date: 10/6/2022 9:05:00 AM						М
Lab ID:	2210315-002F	Matrix: Aqueous						
Analyses	-	Result	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHO	D 365.1: TOTAL PHOSPHOROUS						Anal	yst: CJS
Phosphorus, Total (As P)		ND	0.25	D	mg/L	1	10/25/2022 3:08:00 F	PM 71023
Dissolved p	hosphorous							

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated. В Analyte detected in the associated Method Blank

Above Quantitation Range/Estimated Value Е

Analyte detected below quantitation limits J Sample pH Not In Range

Р RL Reporting Limit

Page 11 of 25

Date Reported: 11/23/2022

Analyst: VP

70811

Lab Order: 2210315

10/14/2022 6:01:40 PM

10/14/2022 6:01:40 PM 70811

CLIENT:	AMAFCA	Client Sample ID: R6 South-20221006						
Project: Lab ID:	CMC Wet FY23 2210315-002G	Collection Date: 10/6/2022 9:05:00 AM Matrix: Aqueous						
Analyses		Result	RL Q	Qual Units	DF	Date Analyzed	Batch ID	
SM2340B: HA	RDNESS					Anal	yst: VP	
Hardness as C	CaCO3	280	6.6	mg/L	1	10/14/2022 2:05:00 F	PM R91819	

82

17

1.0

1.0

mg/L

mg/L

1

1

Hall Environmental Analysis Laboratory, Inc.

EPA METHOD 200.7: METALS

Calcium

Magnesium

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

- В Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value Е Analyte detected below quantitation limits
- J

Sample pH Not In Range Р

RL Reporting Limit

Analytical Report Lab Order: 2210315

10/18/2022 1:07:08 PM A91883

Hall Envi	ronmental Analysis	Laboratory, In	c			Date Reported:	11/23/2022	
CLIENT:	AMAFCA		Cl	ient Sample I	D: Ré	6 South-20221006		
Project:	CMC Wet FY23		(Collection Dat	te: 10	/6/2022 9:05:00 A	М	
Lab ID:	2210315-002N	Matrix: Aqueous						
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch ID	
EPA 200.8: D	DISSOLVED METALS					Ana	lyst: bcv	
Copper		ND	0.0010	mg/L	1	10/18/2022 1:07:08	PM A91883	

0.00050

mg/L

1

ND

Hall Environmental Analysis Laboratory, Inc

Lead

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

- В Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value Е Analyte detected below quantitation limits J
- Р Sample pH Not In Range

RL Reporting Limit

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

 Client:
 Hall Environmental Analysis Lab

 Address:
 4901 Hawkins NE Suite D

 Albuquerque, NM 87109

 Attn:
 Andy Freeman

Work Order: Project: Reported: MCJ0294 2210315 11/1/2022 11:21

Analytical Results Report

Sample Location: Lab/Sample Number: Date Received: Matrix:	2210315-001H (R6 MCJ0294-01 10/07/22 14:03 Water	North-20221005) Collect Date: Collected By:	10/05/22 12:15				
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Volatiles							
Tetrahydrofuran	ND	ug/L	5.00	10/12/22 18:51	BKP	EPA 8260D	
Surrogate: 1,2-Dichlorobenzer	ne-d4	104%	70-130	10/12/22 18:51	ВКР	EPA 8260D	
Surrogate: 4-Bromofluorobenz	zene	94.8%	70-130	10/12/22 18:51	ВКР	EPA 8260D	
Surrogate: Toluene-d8		96.1%	70-130	10/12/22 18:51	ВКР	EPA 8260D	

Analytical Results Report (Continued)

Sample Location:	2210315-001I (R6	North-20221005)	
Lab/Sample Number:	MCJ0294-02	Collect Date:	10/05/22 12:15
Date Received:	10/07/22 14:03	Collected By:	
Matrix:	Water		

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles							
Benzidine	ND	ug/L	1.00	10/18/22 0:20	MH	EPA 8270E	
Benzo[a]anthracene	ND	ug/L	1.00	10/18/22 0:20	MH	EPA 8270E	
Benzo[a]pyrene	ND	ug/L	1.00	10/18/22 0:20	MH	EPA 8270E	
Benzo[b]fluoranthene	ND	ug/L	1.00	10/18/22 0:20	MH	EPA 8270E	
Benzo[k]fluoranthene	ND	ug/L	1.00	10/18/22 0:20	MH	EPA 8270E	
bis(2-Ethylhexyl)phthalate	ND	ug/L	1.00	10/18/22 0:20	MH	EPA 8270E	
Chrysene	ND	ug/L	1.00	10/18/22 0:20	MH	EPA 8270E	
Dibenz[a,h]anthracene	ND	ug/L	1.00	10/18/22 0:20	MH	EPA 8270E	
Dibenzofuran	ND	ug/L	1.00	10/18/22 0:20	MH	EPA 8270E	
Indeno[1,2,3-cd]pyrene	ND	ug/L	1.00	10/18/22 0:20	MH	EPA 8270E	
Pentachlorophenol	ND	ug/L	1.00	10/18/22 0:20	MH	EPA 8270E	
Surrogate: Terphenyl-d14	64.9%		57-133	10/18/22 0:20	МН	EPA 8270E	

Analytical Results Report (Continued)										
Sample Location:	2210315-002H (R6	South-20221006)								
Lab/Sample Number:	MCJ0294-03	Collect Date:	10/06/22 09:05							
Date Received:	10/07/22 14:03	Collected By:								
Matrix:	Water									
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier			
Volatiles										
Tetrahydrofuran	ND	ug/L	5.00	10/12/22 19:21	BKP	EPA 8260D				
Surrogate: 1,2-Dichlorobenzer	ne-d4	104%	70-130	10/12/22 19:21	ВКР	EPA 8260D				
Surrogate: 4-Bromofluorobenz	ene	92.6%	70-130	10/12/22 19:21	ВКР	EPA 8260D				
Surrogate: Toluene-d8		96.5%	70-130	10/12/22 19:21	ВКР	EPA 8260D				

Analytical Results Report							
			(Continued)				
Sample Location:	2210315-002I (R6	South-20221006)					
Lab/Sample Number:	MCJ0294-04	Collect Date:	10/06/22 09:05				
Date Received:	10/07/22 14:03	Collected By:					
Matrix:	Water						

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles							
Benzidine	ND	ug/L	2.50	10/18/22 0:47	MH	EPA 8270E	
Benzo[a]anthracene	ND	ug/L	2.50	10/18/22 0:47	MH	EPA 8270E	
Benzo[a]pyrene	ND	ug/L	2.50	10/18/22 0:47	MH	EPA 8270E	
Benzo[b]fluoranthene	ND	ug/L	2.50	10/18/22 0:47	MH	EPA 8270E	
Benzo[k]fluoranthene	ND	ug/L	2.50	10/18/22 0:47	MH	EPA 8270E	
bis(2-Ethylhexyl)phthalate	ND	ug/L	2.50	10/18/22 0:47	MH	EPA 8270E	
Chrysene	ND	ug/L	2.50	10/18/22 0:47	MH	EPA 8270E	
Dibenz[a,h]anthracene	ND	ug/L	2.50	10/18/22 0:47	MH	EPA 8270E	
Dibenzofuran	ND	ug/L	2.50	10/18/22 0:47	MH	EPA 8270E	
Indeno[1,2,3-cd]pyrene	ND	ug/L	2.50	10/18/22 0:47	MH	EPA 8270E	
Pentachlorophenol	ND	ug/L	2.50	10/18/22 0:47	MH	EPA 8270E	
Surrogate: Terphenyl-d14	78.7%		57-133	10/18/22 0:47	МН	EPA 8270E	

Analytical Results Report (Continued)											
Sample Location:	2210315-003A (Tri	ip Blank)									
Lab/Sample Number:	MCJ0294-05	Collect Date:	10/06/22 00:00								
Date Received:	10/07/22 14:03	Collected By:									
Matrix:	Water										
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier				
Volatiles											
Tetrahydrofuran	ND	ug/L	0.500	10/12/22 19:51	BKP	EPA 8260D					
Surrogate: 1,2-Dichlorobenzer	ne-d4	104%	70-130	10/12/22 19:51	ВКР	EPA 8260D					
Surrogate: 4-Bromofluorobenz	rene	91.6%	70-130	10/12/22 19:51	ВКР	EPA 8260D					
Surrogate: Toluene-d8		104%	70-130	10/12/22 19:51	ВКР	EPA 8260D					

Authorized Signature,

Justin Doty For Todd Taruscio, Laboratory Manager

PQL	Practical Quantitation Limit
ND	Not Detected
MCL	EPA's Maximum Contaminant Level

Sample results reported on a dry weight basis Dry

* Not a state-certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Quality Control Data

Semivolatiles

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BCJ0360 - SVOC Water									
Blank (BCJ0360-BLK1)			Pre	pared: 10/10	/2022 Analyze	ed: 10/17/202	22		
Dibenzofuran	ND	0.500	ug/L		,,				
Benzidine	ND	0.500	ug/L						
Indeno(1,2,3-cd)pyrene	ND	0.500	ug/L						
Dibenz(a,h)anthracene	ND	0.500	ug/L						
Chrysene	ND	0.500	ug/L						
Di (2-ethylhexyl) phthalate	ND	0.500	ug/L						
Benzo[k]fluoranthene	ND	0.500	ug/L						
Benzo[b]fluoranthene	ND	0.500	ug/L						
Benzo[a]pyrene	ND	0.500	ug/L						
Benzo[a]anthracene	ND	0.500	ug/L						
Pentachlorophenol	ND	0.500	ug/L						
Surrogate: Terphenyl-d14		18.7	ug/L	25.0		74.9	57-133		
LCS (BCJ0360-BS1)			Pre	pared: 10/10	/2022 Analyze	ed: 10/17/20	22		
Dibenzofuran	4.43	0.500	ug/L	5.00	, , -	88.6	75-120		
Benzo[a]anthracene	4.38	0.500	ug/L	5.00		87.6	80-120		
Benzo[a]pyrene	4.25	0.500	ug/L	5.00		85.0	66-116		
Benzo[b]fluoranthene	4.61	0.500	ug/L	5.00		92.2	72-116		
Benzo[k]fluoranthene	4.97	0.500	ug/L	5.00		99.4	71-121		
Di (2-ethylhexyl) phthalate	5.39	0.500	ug/L	5.00		108	60-144		
Indeno(1,2,3-cd)pyrene	4.19	0.500	ug/L	5.00		83.8	62-123		
Pentachlorophenol	4.17	0.500	ug/L	5.00		83.4	51-118		
Chrysene	4.70	0.500	ug/L	5.00		94.0	74-124		
Dibenz(a,h)anthracene	4.16	0.500	ug/L	5.00		83.2	62-120		
LCS Dup (BCJ0360-BSD1)			Pre	pared: 10/10	/2022 Analyze	ed: 10/17/20	22		
Di (2-ethylhexyl) phthalate	4.79	0.500	ug/L	5.00		95.8	60-144	11.8	32
Pentachlorophenol	4.51	0.500	ug/L	5.00		90.2	51-118	7.83	25
Indeno(1,2,3-cd)pyrene	4.05	0.500	ug/L	5.00		81.0	62-123	3.40	25
Dibenzofuran	4.46	0.500	ug/L	5.00		89.2	75-120	0.675	25
Chrysene	4.79	0.500	ug/L	5.00		95.8	74-124	1.90	25
Benzo[k]fluoranthene	5.08	0.500	ug/L	5.00		102	71-121	2.19	25
Benzo[b]fluoranthene	4.47	0.500	ug/L	5.00		89.4	72-116	3.08	25
Benzo[a]pyrene	4.07	0.500	ug/L	5.00		81.4	66-116	4.33	25
Benzo[a]anthracene	4.38	0.500	ug/L	5.00		87.6	80-120	0.00	25
Dibenz(a,h)anthracene	3.91	0.500	ug/L	5.00		78.2	62-120	6.20	30

Quality Control Data

Volatiles

Analyte	Result C	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BCJ0445 - VOC Blank (BCJ0445-BLK1)					Prepared &	Analyzed: 10	/12/2022			
Tetrahydrofuran	ND		0.500	ug/L						
Surrogate: 4-Bromofluorobenzene			23.7	ug/L	25.0		94.6	70-130		
Surrogate: Toluene-d8			24.7	ug/L	25.0		98.6	70-130		
Surrogate: 1,2-Dichlorobenzene-d4			19.1	ug/L	19.0		100	70-130		

Quality Control Data

(Continued)

Volatiles (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BCJ0445 - VOC (Continued)										
LCS (BCJ0445-BS1)					Prepared &	Analyzed: 10,	/12/2022			
Tetrahydrofuran	11.7		1.00	ug/L	10.0		117	80-120		

CHAIN	OF	CUSTODY RECORI	PAGE: 1	OF:
CARL MALL	U.	CONTODI MECOM	1 1	

1

Hall.

 $W\epsilon$

SUB CC	NTRATOR: Anate	k ID COMPANY:	Anatek Labs, Inc.		PHONE:		(208) 883-2839	FAX:	(208) 882-9246
ADDRE	^{SS:} 1282 A	Alturas Dr			ACCOUNT #:			EMAIL:	
CITY, S	TATE, ZIP: Mosco	w, ID 83843							
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINERS	A	NALYTICA	L COMMENTS
1	2210315-001H	R6 North-20221005	VOAHCL	Aqueous	10/5/2022 12:15:00 PM	3	8260 Tetrahydrofuran (Only	
2	2210315-001I	R6 North-20221005	1LAMGU	Aqueous	10/5/2022 12:15:00 PM	3	8270 - See attached		
3	2210315-002H	R6 South-20221006	VOAHCL	Aqueous	10/6/2022 9:05:00 AM	3	8260 Tetrahydrofuran (Dnly	
4	2210315-002I	R6 South-20221006	1LAMGU	Aqueous	10/6/2022 9:05:00 AM	2	8270 - See attached		· · · · · · · · · · · · · · · · · · ·
5	2210315-003A	Trip Blank	VOAHCL	Trip Blank		2	8260 Tetrahydrofuran (Dnly	

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you. Received By: JKE Time: 14:03 Date; Date 1/22 Relinquished By: Time: REPORT TRANSMITTAL DESIRED: Za 2:34 PM 10/6/2022 HARDCOPY (extra cost) G FAX EMAIL EMAIL ONLINE Date: Time: Received By: Date: Relinquished By: Time: FOR LAB USE ONLY Relinquished By: Date: Time: Received By: Date: Time: Temp of samples \mathcal{C} Attempt to Cool ? Standard TAT: RUSH Next BD 2nd BD 3rd BD Comments:

Hached Shet

Due: 10/24/22

MCJ0294

Collaborative Monitoring Cooperative - Analyses List Attach to Chain of Custody

Please refer to attached NPDES Permit No. NMR04A00 Appendix F. Methods and minimum qu. (MQL's) will be those approved under 40 CFR 136 and specified in the attached permit

Analyte (Bold Indicates WQS)	CAS #	Fraction	Method #	MDL (µg/L)
Hardness (Ca + Mg)	NA	Total	200.7	2.4
Lead	7439-92-1	Dissolved	200.8	0.09
Copper	7440-50-8	Dissolved	-200.8	1.06
Ammenia + organic nitrogen	7664-41-7	Total	350.1	31.32
Total Kjehidal Nitrogen	17778-88-0	Total	351.2	58.78
Nitrate + Nitrite	14797-55-8	Total	353.2	10,17
Polychlorinated biphenyls (PCBs)	1336-36-3	Total	1668	0.014
Tetrahydrofuran (THF)	109-99-9	Total	8260C	7.9
bis(2-Ethylhexyl)phthalate	117-81-7	Total	8270D	0.2
Dibenzofuran	132-64-9	Total	8270D	0.2
Indeno(1,2,3-cd)pyrene	193-39-5	Total	8270D	0.2
Benzo(b)fluoranthene	205-99-2	Total	8270D	0.1
Benzo(k)fluoranthene	207-08-9	Total	8270D	0.1
Chrysene	218-01-9	Total	8270D	0.2
Benzo(a)pyrene	50-32-8	⊺ota!	5, 70D	0.3
Dibenzo(a,h)anthracene	53-70-3	Total	8270D	0.3
Benzo(a)anthracene	56-55-3	Total	8270D	0.2
Dieldrin	. 60-57-1	Total	8081	0.1
Pentachlorophenol	87-86-5	Total	8270D ·	0.2
Benzidine	92-87-5	Total	8270D	0.1
chemical Oxygen Demand	E1641638 ²	Total	НАСН	5100
ioss alpha (adjusted)	NA	Total	Method 900	0.1 pCi/L
dtal Dissolved Solids	E1642222*	Total	SM 2540C	60.4
otal Suspended Solids	NA	Total	SM 2540D	3450
iological Oxygen Demand	N/A	Total	Standard Methods	930
il and Grease		Total	1664A	5000
coli-enumeration		Dallan en Reis Miller das in partie etters mit synam	SM 9223B	
H			SM 4500	
hosphorus		Dissolved	365.1	100
osphorus		Total	365.1	100
hromium IV		Total	3500Cr C-2011	100

Anatek Labs, Inc.	Sample Receipt	and Prese	MCJ0294	
Client Name: Hall				
TAT: Normal RUSH: days				
Samples Received From: FedEx UPS	USPS C	lient Co	urier Other:	
Custody Seal on Cooler/Box: Yes No	Custo	ody Seals Ir	ntact: Yes N	lo N/A
Number of Coolers/Boxes:4	Туре	of Ice: V	Vet Ice Pa	cks Dry Ice None
Packing Material: Bubble Wrap Bags	Foam/Pean	uts Pap	er None C	ther:
Cooler Temp As Read (°C): 3.8	Cooler Temp Co	rrected (°C): Theri	mometer Used: TR-S
				Comments:
Samples Received Intact?	Yes No	N/A		
Chain of Custody Present?	Yes No	N/A		
Samples Received Within Hold Time?	Yes No	N/A		
Samples Properly Preserved?	Yes No	N/A		
VOC Vials Free of Headspace (<6mm)?	Yes & No	N/A	One of 2 -	trip blanks
VOC Trip Blanks Present?	Yes No	N/A	2210315	5-003. A excessive HS
Labels and Chains Agree?	Yes No	N/A		
Total Number of Sample Bottles Received:	11			
Chain of Custody Fully Completed?	Ves No	N/A		
Correct Containers Received?	Yes No	N/A		4
Anatek Bottles Used?	Yes No	Unknown		
Record preservatives (and lot numbers, if ki	nown) for contai	ners below:		
HCI - 8260 Tetrahydrofur	an only-9	, 44mL ;	x Le + 2 TE	dis .
Notes, comments, etc. (also use this space	if contacting the	e client - red	cord names and c	late/time)
8270 (see attached) - g2L ×				

Received/Inspected By:

_Date/Time: 10/7/22 14:03

Form F19.00 - Eff 8 Feb 2019

Pace Analytical ANALYTICAL REPORT October 18, 2022

Hall Environmental Analysis Laboratory

Sample Delivery Group: Samples Received:

L1544321 10/07/2022

Report To:

Description:

Project Number:

Andy Freeman 4901 Hawkins NE Albuquerque, NM 87109

Тс Ss Cn Sr ʹQc Gl AI Sc

Entire Report Reviewed By: John V Howkins

John Hawkins Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Hall Environmental Analysis Laboratory

SDG: L1544321

DATE/TIME: 10/18/22 13:38

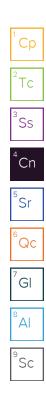
TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
2210315-001KM R6 NORTH-20221005 L1544321-01	5
2210315-002KM R6 SOUTH-20221006 L1544321-02	6
Qc: Quality Control Summary	7
Wet Chemistry by Method 3500Cr C-2011	7
Wet Chemistry by Method 410.4	8
GI: Glossary of Terms	10
Al: Accreditations & Locations	11
Sc: Sample Chain of Custody	12

SAMPLE SUMMARY

			Collected by	Collected date/time	Received dat	te/time
2210315-001KM R6 NORTH-20221005 L1544321-0	D1 GW			10/05/22 12:15	10/07/22 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 3500Cr C-2011	WG1938076	1	10/12/22 07:17	10/12/22 07:17	ARD	Mt. Juliet, TN
Wet Chemistry by Method 410.4	WG1939857	1	10/09/22 17:30	10/09/22 20:03	EPW	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
2210315-002KM R6 SOUTH-20221006 L1544321-	02 GW			10/06/22 09:05	10/07/22 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 3500Cr C-2011	WG1938076	1	10/12/22 07:25	10/12/22 07:25	ARD	Mt. Juliet, TN
Wet Chemistry by Method 410.4	WG1940273	1	10/10/22 13:00	10/10/22 16:42	TQP	Mt. Juliet, TN

Ср


²Tc

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

VHankins

John Hawkins Project Manager

SAMPLE RESULTS - 01 L1544321

Wet Chemistry by Method 3500Cr C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		2
Hexavalent Chromium	ND		0.000500	1	10/12/2022 07:17	WG1938076	Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		⁴ Cn
COD	22.3		20.0	1	10/09/2022 20:03	WG1939857	CIT

Qc

SAMPLE RESULTS - 02 L1544321

Wet Chemistry by Method 3500Cr C-2011

Wet Chemistry by N	Aethod 35000	Cr C-2011					1
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		2
Hexavalent Chromium	ND		0.000500	1	10/12/2022 07:25	WG1938076	Tc
Wet Chemistry by N	Nethod 410.4						³ Ss

		Result	Qualifier	RDL	Dilution	Analysis	Batch	
Ana	lyte	mg/l		mg/l		date / time		⁴ C
COE)	ND		20.0	1	10/10/2022 16:42	WG1940273	

WG1938076

Wet Chemistry by Method 3500Cr C-2011

QUALITY CONTROL SUMMARY L1544321-01,02

Method Blank (MB)

(MB) R3849771-1 10/11/2	2 21:36					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/l		mg/l	mg/l		
Hexavalent Chromium	U		0.000150	0.000500		

L1542321-01 Original Sample (OS) • Duplicate (DUP)

(MB) R3849771-1 10/11/2	2 21:36					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/l		mg/l	mg/l		
Hexavalent Chromium	U		0.000150	0.000500		
L1542321-01 Orig	inal Sample ((OS) • Dupl	licate (D	UP)		
	-					
L1542321-01 Orig (OS) L1542321-01 10/11/:	22 22:35 • (DUP)	R3849771-5 10)/11/22 22:4	2	DUP RPD	
(OS) L1542321-01 10/11/2	22 22:35 • (DUP) Original Result	R3849771-5 1C DUP Result)/11/22 22:4	2 DUP RPD <u>DUP Qualifier</u>	Limits	
	22 22:35 • (DUP)	R3849771-5 10)/11/22 22:4	2		
(OS) L1542321-01 10/11/2	22 22:35 • (DUP) Original Result	R3849771-5 1C DUP Result)/11/22 22:4 Dilution	2 DUP RPD <u>DUP Qualifier</u>	Limits	

L1542881-01 Original Sample (OS) • Duplicate (DUP)

L1542881-01 Orig	jinal Sample ((OS) • Dup	licate ([OUP)		
(OS) L1542881-01 10/12	/22 00:15 • (DUP)	R3849771-6 1	10/12/22 00	D:22		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Hexavalent Chromium	ND	ND	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3849771-2 10/11/2	22 21:43				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Hexavalent Chromium	0.00200	0.00205	102	90.0-110	

L1542312-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1542312-01 10/11/2	22 22:10 • (MS) R3	3849771-3 10/1	I/22 22:19 • (N	ISD) R3849771-	4 10/11/22 22	2:27						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Hexavalent Chromium	0.0500	ND	0.0507	0.0511	101	102	1	90.0-110			0.884	20

L1543260-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1543260-01 10/12/22	: 00:38 • (MS) F	83849771-7 10/	/12/22 01:01				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Hexavalent Chromium	0.0500	ND	0.0503	101	1	90.0-110	

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Hall Environmental Analysis Laboratory		L1544321	10/18/22 13:38	7 of 12

WG1939857

Wet Chemistry by Method 410.4

QUALITY CONTROL SUMMARY L1544321-01

Method Blank (MB)

Method Blar	IK (IVIB)			
(MB) R3846395-1	10/09/22 19:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
COD	U		11.7	20.0

L1543424-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1543424-01 10/09/2	22 19:54 • (DUP)	R3846395-3	10/09/22	19:55		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
COD	47.4	47.7	1	0.610		20

L1544335-01 Original Sample (OS) • Duplicate (DUP)

Original Result DUP Result Dilution DUP RPD DUP Qualifier DUP RPD Limits Analyte mg/l mg/l % %	L1544335-01 Ori	ginal Sample	e (OS) • Du	plicate ((DUP)		
Original Result DOP Result Dilution DOP RPD <u>DOP Qualifier</u> Limits	OS) L1544335-01 10/()9/22 20:03 • (DU	JP) R3846395-	-6 10/09/2	2 20:04		
Analyte mg/l mg/l % %		Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
	Analyte	mg/l	mg/l		%		%
COD 32.2 32.7 1 1.60 20	COD	32.2	32.7	1	1.60		20

Laboratory Control Sample (LCS)

(LCS) R3846395-2 10/09,	LCS) R3846395-2 10/09/22 19:53									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/l	mg/l	%	%						
COD	500	537	107	90.0-110						

L1543925-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1543925-02 10/09/	(OS) L1543925-02 10/09/22 19:56 • (MS) R3846395-4 10/09/22 19:57 • (MSD) R3846395-5 10/09/22 19:58											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyta				0	0/	0/		0/			<u> </u>	21
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%

Sample Narrative:

MS: Matrix spike failure due to matrix interference.

MSD: Matrix spike failure due to matrix interference.

ACCOUNT:
Hall Environmental Analysis Laboratory

PROJECT:

SDG: L1544321

DATE/TIME: 10/18/22 13:38 ⁺Cn

Sr

WG1940273

Wet Chemistry by Method 410.4

QUALITY CONTROL SUMMARY L1544321-02

Method Blank (MB)

(MB) R3846784-1 10/1	(MB) R3846784-1 10/10/22 16:33									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/l		mg/l	mg/l						
COD	U		11.7	20.0						

Тс

Ss

Cn

Sr

L1544252-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1544252-02 10/10/	(OS) L1544252-02 10/10/22 16:36 • (DUP) R3846784-5 10/10/22 16:36										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	mg/l	mg/l		%		%					
COD	33.9	37.2	1	9.50		20					

L1544331-02 Original Sample (OS) • Duplicate (DUP)

L1544331-02 Origin	nal Sample	(OS) • Dup	licate (ا	DUP)				⁷ Gl				
(OS) L1544331-02 10/10/2	OS) L1544331-02 10/10/22 16:42 • (DUP) R3846784-6 10/10/22 16:42											
Original Result DUP Result Dilution DUP RPD DUP Qualifier DUP RPD Limits												
Analyte	mg/l	mg/l		%		%						
COD	33.9	28.6	1	16.9		20		⁹ Sc				

Laboratory Control Sample (LCS)

(LCS) R3846784-2 10/10/	.CS) R3846784-2 10/10/22 16:34										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/l	mg/l	%	%							
COD	500	483	96.7	90.0-110							

L1544093-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1544093-01 10/10/22	OS) L1544093-01 10/10/22 16:34 • (MS) R3846784-3 10/10/22 16:34 • (MSD) R3846784-4 10/10/22 16:34											
Spike Amount Original Result MS Result MS Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits												
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
COD	500	ND	532	549	106	110	1	80.0-120			3.15	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Hall Environmental Analysis Laboratory		L1544321	10/18/22 13:38	9 of 12

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).

The sample matrix interfered with the ability to make any accurate determination; spike value is high.

J5

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1544321

	HALL ENVIRONI ANALYSIS LABORAT		CHAIN OF	r CUST	TODY I	RECORD	JE:]	OF: 1 A	Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 osite: www.hallenvironmental.com	
SUB CO	NTRATOR: Pace	COMPANY:	PACE TN			PHONE:		(800) 767-5859 FAX:	(615) 758-5859	
ADDRE	^{SS:} 12065	Lebanon Rd			ACCOUNT #:	ACCOUNT #: EMAIL:				
CITY, ST	TATE, ZIP: Mt. Ju	ıliet, TN 37122								
					the second		# CONT/		L1544321	
ITEM	SAMPLE	CLIENT SAMPLE ID		OTTLE TYPE	MATRIX	COLLECTION DATE	AINERS	ANALYTICA	AL COMMENTS	
1	2210315-001K	R6 North-20221005	500		Aqueous	10/5/2022 12:15:00 PN	1	COD	71	
2	2210315-001M	R6 North-20221005	120		Aqueous	10/5/2022 12:15:00 PN	1	HEXAVALENT CHROMIUM	fol	
3	2210315-002K	R6 South-20221006	500		Aqueous	10/6/2022 9:05:00 AM	1	COD	7-2	
4	2210315-002M	R6 South-20221006	120		Aqueous	10/6/2022 9:05:00 AM	1	HEXAVALENT CHROMIUM	104	

cont.-4 0221 5755 8093 2632

COC Seal Present Intact: Y N If Applicable COC Signed Accurate: N VOA Zero Headspace: Bottles arrive intact: N Pres.Correct/Check: Correct bottles used: N Pres.Correct/Check: Sufficient volume sent: N RAD Screen <0.5 mR/hr: N	N Pres.Correct/Check: Y
--	-------------------------

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

Relinquished By:	Date: 10/6/2022 Date:	Time: 11:42 AM	Received By Received By	Pojon N Date:	Time:	REPORT TRANSMITTAL DESIRED: HARDCOPY (extra cost)	
Remiquisited by.	Duro.			1000 m		FOR LAB USE ONLY	
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	· Lath < a	
TAT: Sta	ndard	RUSH	Next BD 2nd BD 2	3rd BI		Temp of samples $3 \cdot 0 \cdot 0 \cdot 3 \cdot 0 \cdot C$ Attempt to Cool?	

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

November 10, 2022

Andy Freeman Hall Environmental 4901 Hawkins NE Albuquerque, NM 87109

RE: Project: 2210315 Pace Project No.: 30528336

Dear Andy Freeman:

Enclosed are the analytical results for sample(s) received by the laboratory on October 07, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

(010

Carla Cmar carla.cmar@pacelabs.com (724)850-5600 Project Manager

Enclosures

cc: Ms. Jackie Ball, Hall Environmental Michelle Garcia, Hall Environmental

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

 Project:
 2210315

 Pace Project No.:
 30528336

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project:	2210315
Pace Project No.:	30528336

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30528336001	2210315-001L/R6 North-20221005	Water	10/05/22 12:15	10/07/22 09:25
30528336002	2210315-002L/ R6 South-2022100	Water	10/06/22 09:05	10/07/22 09:25

SAMPLE ANALYTE COUNT

 Project:
 2210315

 Pace Project No.:
 30528336

			Analytes	
Sample ID	Method	Analysts	Reported	Laboratory
2210315-001L/R6 North-20221005	EPA 900.0	SVM	1	PASI-PA
	EPA 900.0	JAL	1	PASI-PA
2210315-002L/ R6 South-2022100	EPA 900.0	SVM	1	PASI-PA
	EPA 900.0	JAL	1	PASI-PA
	 2210315-001L/R6 North-20221005	2210315-001L/R6 North-20221005 EPA 900.0 EPA 900.0 EPA 900.0 2210315-002L/ R6 South-2022100 EPA 900.0	2210315-001L/R6 North-20221005 EPA 900.0 SVM EPA 900.0 JAL 2210315-002L/ R6 South-2022100 EPA 900.0 SVM	Sample ID Method Analysts Reported 2210315-001L/R6 North-20221005 EPA 900.0 SVM 1 EPA 900.0 JAL 1 2210315-002L/ R6 South-2022100 EPA 900.0 SVM 1

PASI-PA = Pace Analytical Services - Greensburg

PROJECT NARRATIVE

 Project:
 2210315

 Pace Project No.:
 30528336

Method:	EPA 900.0
Description:	900.0 Gross Alpha/Beta
Client:	Hall Environmental
Date:	November 10, 2022

General Information:

2 samples were analyzed for EPA 900.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

 Project:
 2210315

 Pace Project No.:
 30528336

Method:	EPA 900.0
Description:	Adjusted Gross Alpha
Client:	Hall Environmental
Date:	November 10, 2022

General Information:

2 samples were analyzed for EPA 900.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2210315

Pace Project No.: 30528336

Sample:	2210315-001L/R6 North- 20221005	Lab ID: 305283	36001 Collect	ted: 10/05/22 12:15	Received:	10/07/22 09:25	Matrix: Water	
PWS:		Site ID:	Sampl	е Туре:				
	Parameters	Method	Act ± Unc	(MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
		Pace Analytical Se	rvices - Greenst	ourg				
Gross Alp	bha	EPA 900.0	2.00 ± 1.50 (C:NA T:NA	(2.55)	pCi/L	10/14/22 08:4	1 12587-46-1	
		Pace Analytical Se	rvices - Greenst	ourg				
Adjusted	Gross Alpha	EPA 900.0	<mark>0.895 ±</mark> NA (C:NA T:NA	(NA)	pCi/L	11/10/22 15:20	0	
Sample:	2210315-002L/ R6 <mark> South</mark> 2022100	- Lab ID: 305283	36002 Collect	ted: 10/06/22 09:05	Received:	10/07/22 09:25	Matrix: Water	
PWS:	2022100	Site ID:	Sampl	е Туре:				
	Parameters	Method	Act ± Unc	(MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
		Pace Analytical Se	rvices - Greenst	ourg				
Gross Alp	bha	EPA 900.0	25.3 ± 5.74 (C:NA T:NA	(3.07)	pCi/L	10/13/22 19:38	8 12587-46-1	
		Pace Analytical Se	rvices - Greenst	ourg				
Adjusted	Gross Alpha	EPA 900.0	22.98 ± NA (C:NA T:NA	(NA)	pCi/L	11/10/22 15:20	D	

QUALITY CONTROL - RADIOCHEMISTRY

Project:	2210315						
Pace Project No.:	30528336						
QC Batch:	538872		Analysis Method:	EPA 900.0			
QC Batch Method:	EPA 900.0		Analysis Description:	900.0 Gross Alp	oha/Beta		
			Laboratory:	Pace Analytical	Services - Greensbu	ırg	
Associated Lab Sar	mples: 30528336	6001, 3052833600)2				
METHOD BLANK:	2614993		Matrix: Water				
Associated Lab Sa	mples: 30528336	001, 3052833600	02				
Para	neter	Act ±	Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Gross Alpha		0.883 ± 0.808 (1.48) C:NA T:NA	pCi/L			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2210315 Pace Project No.: 30528336

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

CHAIN OF CUSTODY RECORD

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

SUB CO	NTRATOR: Pace-O	Greensburg COMPANY:	Pace Analytical Ser	vices, In	PHONE:	(724) 850-5600	FAX:	(724) 850-5601
ADDRES	^{SS:} 1638 F	Roseytown Rd Ste 2,3,4			ACCOUNT #:		EMAIL:	
CITY, SI	Green	sburg, PA 15601						
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINER	ANALYTICAL	COMMENTS
-		R6 North-20221005	1LHDPEHNO		10/5/2022 12:15:00 PM	2 Adjusted Gross Alpha	3	ин талан талан талар талар Талар талар тала
2	2210315-002L	R6 South-20221006	1LHDPEHNO	Aqueous	10/6/2022 9:05:00 AM	2 Adjusted Gross Alpha	3	

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

Relinquished By:	Date: 10/6/202	2 Time: 2 11:46 AM	Received By: Roch	0771722	19:25		RT TRANSMITT		
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	HARDCOPY (extra cost)	🗆 FAX	📋 EMAIL	ONLINE
							FOR LAB USE	ONLY	
elinquished By:	Date:	Time:	Received By:	Date:	Time:		r		
TAT:	Standard 😾	Standard 🗹 RUSH Next BD 🗌 2nd BD 🗍 3rd BD 🗍		t	Attempt to Cool ?				
						Comments:			

Pittsburgh	/-FRM-GB	UR-	-008	8 v02	2_Sample	Conc	lition	Upon Receipt-		
Pace Effective Date: 10,	/03/2022			·····						
Client Name: Hall					1	Project	#:			
	an a				- t			entradiction en este		
Courier: 🗹 Fed Ex 🗌 UPS 🗌 USPS 🛽	Client 🛛 Co	omm	nercia	al 🗆 P	ace 🗌 Othe	r				T
Tracking Number: 5344	1410	2	7	710)			Examined By	PS	
Custody Seal on Cooler/Box Present	:: 🛛 Yes 🛛	110		Seals I	Intact:]Yes {	No	Labeled By	P5.	
Thermometer Used:	Туре о	f ice:	: W	/et Bl	ue None)		Temped By	~	
								- Final Tamps	°C	1
Cooler Temperature: Observed Te	emp	^(Corre	ction Factor	:		C Final Temp:	v	
Temp should be above freezing to 6°C					pH paper	Lot#	I	D.P.D. Residual Chlo	orine Lot #	
Comments:	Ý	es	No	NA	10.004		-'		· · · ·	
Chain of Custody Present		7		<u> </u>	1.	- (<u>_</u>			
Chain of Custody Filled Out:	<u> </u>	and the second s			2.					
-Were client corrections present	on coc									ı
Chain of Custody Relinquished		_			3.			·····		2
Sampler Name & Signature on COC:					4.		L 18-7			Due Date: 10/28/22
Sample Labels match COC:		\checkmark		İ.,,	5.					/28
-Includes date/time/ID									ပ	9
Matrix:	ļ	\mathcal{N}^{-}	T						რ	
Samples Arrived within Hold Time:					6.				<u>რ</u>	
Short Hold Time Analysis (<72hr		·	and the second		7.				0	
remaining):								· · · · · · · · · · · · · · · · · · ·	<u> </u>	l ă
Rush Turn Around Time Requested:			/		8. '		,		<u>_</u>	2
Sufficient Volume:					9.				C	2
Correct Containers Used:					10.				C	7
-Pace Containers Used									ه ه استان ا	10
Containers Intact:		\square			11.					티크
Orthophosphate field filtered:				-	12. 13.				<u>c</u>	ノェ
Hex Cr Aqueous samples field filtered				-	13.					3 0
Organic Samples checked for dechlor Filtered volume received for dissolve					14.					
Iltered Volume received for dissolve	~~~~~	\rightarrow			16.					
exceptions: VOA, coliform, TOC, Phenolics, Radon, non-aqueous	0&G,				PH	67				
All containers meet method preserv					Initial when	DC		Date/Time of		
requirements:					completed Lot# of added Preservative	<u>r</u>		Preservation		
Headspace in VOA Vials (>6mm):				\leq	17.					
rip Blank Present:			/		18.					
Frip Blank Custody Seals Present			/							
Rad Samples Screened <0.5 mrem/h	r,	7			Initial when completed	25	Date:	10/7/22 Survey	Meter 1563	3

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

.

ace Analytical®

Pace Greensburg Lab -Sample Container Count

Profile Number

1845

7210315 Site

Client

NI	ataa	
IN	otes	

Line Item	Matrix	AG1H	AG1S	AG1T	AG2U	AG3S	AG3U	AG5U	AG5T	BG1U	BG2U	BP1N	BP1U	BP2S	BP2U	BP3C	BP3N	BP3S	BP3U	DG9S	GCUB	NG9H	VG9T	NGDV	VOAK	WGFU	MGKL	ZPLC	
1	INT											2																	
2	Ý											S			1. e														
3																													
4																													
5	1																												
6																									-0		0	•	
7																						101	‡: :	30	52	83	36]
8																						M: H			Due	e Dat	.e: 1	0/28/	22
9																							IT: H	ALL	ENVI	RON			
10																					-							1	Í
11	-																				-								
12		:						-																					

Container Codes

Page 12 of 23

i

	Glass												
GJN	1 Gallon Jug with HNO3	DG9S	40mL amber VOA vial H2SO4										
AG5U	100mL amber glass unprserved	VG9U	40mL clear VOA vial										
AG5T	100mL amber glass Na Thiosulfate	VG9T	40mL clear VOA vial Na Thiosul										
GJN	1 Gallon Jug	VG9H	40mL clear VOA vial HCI										
AG1S	1L amber glass H2SO4	JGFU	4oz amber'wide jar										
AG1H	1L amber glass HCl	WGFU	4oz wide jar unpreserved										
AG1T	L amber glass Na Thiosulfate	BG2U	500mL clear glass unpreserved										
BG1U	1L clear glass unpreserved	AG2U	500mL amber glass unpreserved										
AG3S	250mL amber glass H2SO4	WGKŲ	8oz wide jar unpreserved										
AG3U	250mL amber glass unpreserved												

	P	las	stic /	Misc.
GCUB	1 Gallon Cubitainer		EZI	5g Encore
12GN	1/2 Gallon Cubitainer		VOAK	Kit for Volatile Solic
SP5T	120mL Coliform Na Thiosulfate		1	Wipe/Swab
BP1N	1L plastic HNO3		ZPLC	Ziploc Bag
BP1U	1L plastic unpreserved			
BP3S	250mL plastic H2SO4		WT	Water
BP3N	250mL plastic HNO3		SL	Solid
BP3U	250mL plastic unpreserved		OL	Non-aqueous liquio
BP3C	250ml plastic NAOH		WP	Wipe
BP2S	500mL plastic H2SO4	1	••••••	
BP2U	500mL plastic unpreserved			

Pace Analytical ANALYTICAL REPORT November 10, 2022

Pace Analytical - Greensburg, PA

Sample Delivery Group:	L1547177
Samples Received:	10/15/2022
Project Number:	30528336
Description:	2210315
Site:	001
Report To:	Carla Cmar
	1638 Roseytown Road
	Greensburg, PA 15601

Entire	Report	Reviewed	Bv:
	Report	I C VIC W C G	Dy.

fidson

Donna Eidson Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Pace Analytical - Greensburg, PA PROJECT: 30528336

SDG: L1547177

DATE/TIME: 11/10/22 10:15 age PAGE: 1 of 11

Тс Ss Cn Sr ʹQc Gl ΆI Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
2210315-001L/R6 NORTH-20221005 L1547177-01	5
2210315-002L//R6 SOUTH-2022100 L1547177-02	6
Qc: Quality Control Summary	7
Radiochemistry by Method D5174	7
GI: Glossary of Terms	8
Al: Accreditations & Locations	9
Sc: Sample Chain of Custody	10

SDG: L1547177 DATE/TIME: 11/10/22 10:15 Page 14 of 23 PAGE: 2 of 11

SAMPLE SUMMARY

2210315-001L/R6 NORTH-20221005 L1547177-01 Water	Non-Potał	ole	Collected by	Collected date/time 10/05/22 12:15	Received dat 10/15/22 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Radiochemistry by Method D5174	WG1949166	1	11/03/22 14:48	11/09/22 16:17	SNR	Mt. Juliet, TN
2210315-002L//R6 SOUTH-2022100 L1547177-02 Water	Non-Pota	ble	Collected by	Collected date/time 10/06/22 09:05	Received dat 10/15/22 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Radiochemistry by Method D5174	WG1949166	1	11/03/22 14:48	11/09/22 16:20	SNR	Mt. Juliet, TN

SDG: L1547177 DATE/TIME: 11/10/22 10:15

GI

ΆI

Sc

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Donna Eidson Project Manager

SDG: L1547177 DATE/TIME: 11/10/22 10:15 Page 16 of 23

PAGE:

4 of 11

2210315-001L/R6 NORTH-20221005 Collected date/time: 10/05/22 12:15

SAMPLE RESULTS - 01

Radiochemistry by Method D5174

							 Cn.
	Result	Qualifier	Uncertainty	RDL	Analysis Date	Batch	Cp
Analyte	ug/l		+ / -	ug/l	date / time		2
Uranium	1.65		0.0549	1.00	11/09/2022 16:17	WG1949166	⁻Tc

SDG: L1547177 DATE/TIME: 11/10/22 10:15 Page 17 of 23 PAGE: 5 of 11

2210315-002L//R6 SOUTH-2022100 Collected date/time: 10/06/22 09:05

SAMPLE RESULTS - 02

Radiochemistry by Method D5174

							Cn.
	Result	Qualifier	Uncertainty	RDL	Analysis Date	Batch	Cp
Analyte	ug/l		+/-	ug/l	date / time		2
Uranium	3.46		0.115	1.00	11/09/2022 16:20	WG1949166	⁻Tc

DATE/TIME: 11/10/22 10:15 Page 18 of 23 PAGE: 6 of 11

WG1949166

Radiochemistry by Method D5174

QUALITY CONTROL SUMMARY L1547177-01,02

Method Blank (MB)

MB Rss11 MB Qualifier MB MDL MB RDL Analyte ug/l ug/l ug/l Uranium U 1.00 1.00	Method Blank				
Analyte ug/l ug/l ug/l	(MB) R3859221-1 1'	1/09/22 15:57			
		MB Result	MB Qualifier	MB MDL	MB RDL
Uranium U 1.00 1.00	Analyte	ug/l		ug/l	ug/l
	Uranium	U		1.00	1.00

Laboratory Control Sample (LCS)

(LCS) R3859221-2 11/09	9/22 16:00				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Uranium	30.0	29.2	97.5	80.0-120	

⁺Cn

Sr

GI

Â

Sc

L1547600-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1547600-01 11/09/22 16:58 • (MS) R3859221-3 11/09/22 16:02 • (MSD) R3859221-5 11/09/22 16:07												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Uranium	20.0	ND	20.3	20.1	101	101	1	75.0-125			0.781	20

L1547600-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1547600-02 11/09/2	(OS) L1547600-02 11/09/22 17:00 • (MS) R3859221-4 11/09/22 16:04 • (MSD) R3859221-6 11/09/22 16:10												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Uranium	20.0	ND	18.7	19.3	93.6	96.5	1	75.0-125			3.07	20	

				Page 19 of 23
ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Pace Analytical - Greensburg, PA	30528336	L1547177	11/10/22 10:15	7 of 11

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

SDG: L1547177 DATE/TIME: 11/10/22 10:15

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1547177 DATE/TIME: 11/10/22 10:15

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

														D17	71				
Inte	ernal Transfer C	hain c	of Custod	у —								(-	1	Pa) ce.	Analytical®
			Samples	Pre-Logged i	nto eCC	C.			Of Orig Needed		VM Yes		No		1	/			www.pacelabs.com
1 Department of		korder N	ame: 221031	5					er Recei			10/7/20				eque	ested	By:	11/4/2022
Repor			Subcontrac	t To								Requ	ested A	haiysis	5			T	
Pace 1638 Suite	M. Compton Analytical Pittsburgh Roseytown Road s 2,3,4		12065 Mt. Ju	National Lebanon Rd iet, TN 37122 (615) 758-5858	8					~*									
Phon	nsburg, PA 15601 e (724)850-5600									Uranium KPA					1. 15.1 3			141	LISUNIN
		line of the				Pre	eserv	red Cor	tainers										
Item	Sample ID	Sample Type	Collect Date/Time	Lab ID	Matrix	HN03													LAB USE ONLY
	2210315-001L/R6 North-20221005	PS	10/5/2022 12:15	30528336001	Water	1				Х									-21
	2210315-002L/ R6 South-2022100	PS	10/6/2022 09:05	30528336002	Water	1				Х								+	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
3	a													_	-				
4						+	_	_				and a second sec	1-1-1-1 					-	
5	te and manager of the transformer and the termination of				<u> </u>										Comm	nents			the state of the second
			Dete/Time	Received E	2.4				Date/Tir	ne					00111	nemo		-	
Tran 1 2	sfers Released By Jacob H	ano	Date/Time		-				10/151	-	ζ								0V-
3 Coo	ler Temperature on Recei	pt	°C Cu	stody Seal	or I	N		Rec	eived o	n Ice	D	or N		ŝ	Sam	ples	Intact	(Y	or N

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

Sample Receipt Checklist COC Seal Present/Intact: Y __ N If F COC Signed/Accurate: ___ N VOA Zero H If Applicable N VOA Zero Headspace: X_N N Pres.Correct/Check: X_N Bottles arrive intact: Correct bottles used: Sufficient volume sent: RAD Screen <0.5 mR/hr: 1 14.17.0=14.1 Ν $\mathbf{J}_{\mathbf{Y}}^{\mathbf{Y}}$

CHAIN OF CUSTODY RECORD PAGE: 1

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975

FAX: 505-345-4107 Website: www.hallenvironmental.com SUJIN

0.011						

SUB CC	NTRATOR: Pace	-Greensburg COMPANY:	Pace Analytical Se	rvices, In	PHONE:	(724) 850-5600	FAX:	(724) 850-5601	
ADDRE	.66.	Roseytown Rd Ste 2,3,4			ACCOUNT #:		EMAIL:	A	
CITY, S	TATE, ZIP: Gree	ensburg, PA 15601							
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION	# CONTAINER	ANALYTICAL	COMMENTS	
Personal Property in which the	2210315-001	And the second	1LHDPEHNO	of the second	10/5/2022 12:15:00 PM	2 Adjusted Gross A	lpha		
2	2210315-002	R6 South-20221006	1LHDPEHNC	Aqueous	10/6/2022 9:05:00 AM	2 Adjusted Gross A	lpha		

SPECIAL INSTRUCTIONS / COMMENTS:

HALL

ANALYSIS

LABORATORY

ENVIRONMENTAL

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

telinquished By: Sec	Date: 10/6/2022	Time: 11:46 AM	Received By: 10 Noch	55/1722	19:25	REPORT TRANSMITTAL DESIRED:
telinquished By:	Date:	Time:	Recaived By:	Date:	Time:	FOR LAB USE ONLY
telinquished By:	Date:	Time:	Received By:	Date:	Time:	Temp of samplesC Attempt to Cool ?
TAT: Standard		RUSH	Next BD 2nd BD	3rd B	₽□	Comments;

an affiliate of The GEL Group INC

www.capefearanalytical.com

November 23, 2022

Mr. Andy Freeman Hall Environmental 4901 Hawkins NE Suite D Albuquerque, New Mexico 87109

Re: Routine Analysis Work Order: 20534 SDG: 2210315

Dear Mr. Freeman:

Cape Fear Analytical LLC (CFA) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on October 07, 2022. This original data report has been prepared and reviewed in accordance with CFA's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at 910-795-0421.

Sincerely,

Cynde Larking

Cynde Larkins Project Manager

Purchase Order: IDIQ Pricing Enclosures

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

CFA WO#20534

SUB CC	NTRATOR: Cape	Fear Analytical COMPANY:	Cape Fear Analyti	cal	PHONE:	(910) 795-0421	FAX:
ADDRE	^{SS:} 3306 I	Kitty Hawk Rd Ste 120			ACCOUNT #:		EMAIL:
CITY, ST	TATE, ZIP: Wilmi	ngton, NC 28405					
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINERS	ANALYTICAL COMMENTS
1	2210315-001J	R6 North-20221005	1LAMGU	Aqueous	10/5/2022 12:15:00 PM	1 PCBs by 1668	
2	2210315-002J	R6 South-20221006	1LAMGU	Aqueous	10/6/2022 9:05:00 AM	1 PCBs by 1668	

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

Relinquished By: Sec	Date: 10/6/2022	Time 11:42 AM	Received By and failing	Date: 070CT2Z	Time: 0947	REPORT TRANSMITTAL DESIRED:				
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	HARDCOPY (extra cost) FAX EMAIL ONLINE				
Relinquished By	Date: Time: Received By:		Date:	Time:	FOR LAB USE ONLY					
TAT: Sta	andard	RUSH	Next BD 2nd BD	3rd BD	>	Temp of samplesC Attempt to Cool ?				
						Comments:				

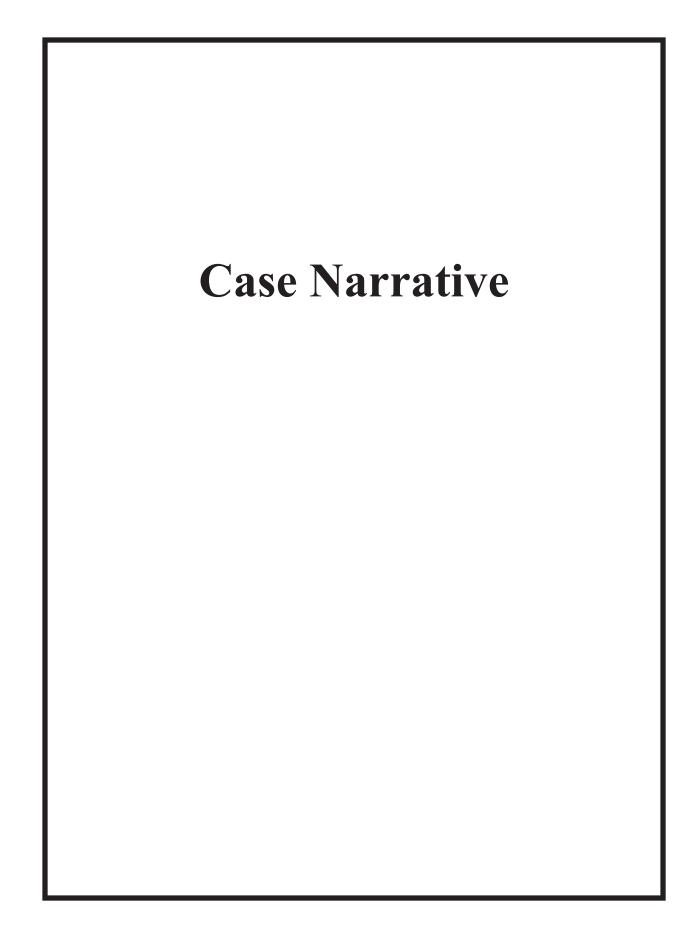
HALL

ANALYSIS

LABORATORY

ENVIRONMENTAL

SAMPLE RECEIPT CHECKLIST


Cape Fear Analytical

Clie	nt: HALL				Work Order: 20534
Ship	oping Company: FedEx				Date/Time Received: 070CT22 8947
	pected Hazard Information	Yes	NA	No	DOE Site Sample Packages Yes NA No*
	oped as DOT Hazardous?			0	Screened <0.5 mR/hr?
San	nples identified as Foreign Soil?				Samples < 2x background? * Notify RSO of any responses in this column immediately.
	Sample Receipt Specifics	Yes	NA	No	
Air	sample in shipment?				Air Witness:
	Sample Receipt Criteria	Yes	NA	No	Comments/Qualifiers (required for Non-Conforming Items)
1	Shipping containers received intact and sealed?	V			seals broken damaged container leaking container other(describe)
2	Custody seal/s present on cooler?	V			Seal intact? (Yes) No
3	Chain of Custody documents included with shipment?	V			
4	Samples requiring cold preservation within 0-6°C?		/		Preservation Method: ice bags loose ice blue ice dry ice none other (describe) $5.3^{\circ} - 0.1 = 5.2^{\circ}$
5	Aqueous samples found to have visible solids?	\checkmark			5.3°-0.1=5.2°C Sample IDs, containers affected: Minimal Ablids (<10/0), cloudy
5	Samples requiring chemical preservation at proper pH?		/	/	Sample IDs, containers affected and pH observed: PH=7 en both If preservative added, Lot#:
7	Samples requiring preservation have no residual chlorine?		1		Sample IDs, containers affected: If preservative added, Lot#:
8	Samples received within holding time?				Sample IDs, tests affected:
9	Sample IDs on COC match IDs on containers?	/			Sample IDs, containers affected:
10	Date & time of COC match date & time on containers?	7			Sample IDs, containers affected:
11	Number of containers received match number indicated on COC?	V	1		List type and number of containers / Sample IDs, containers affected: 2 - IL WMA & bottles, (per sample
12	COC form is properly signed in relinquished/received sections?	V			
Cor	nments:				

Cf

Date: 070CT22

PCB Congeners Analysis

PCBC Case Narrative Hall Environmental Analysis Laboratory (HALL) SDG 2210315 Work Order 20534

Method/Analysis Information

Product:	PCB Congeners by EPA Method 1668A in Liquids					
Analytical Method:	EPA Method 1668A					
Extraction Method:	SW846 3520C					
Analytical Batch Number: 51323						
Clean Up Batch Number:	51322					
Extraction Batch Number	: 51321					

Sample Analysis

Samples were received within temperature requirements at 5.2°C (20534001, 20534002). The following samples were analyzed using the analytical protocol as established in EPA Method 1668A:

Sample ID	Client ID
12033076	Method Blank (MB)
12033077	Laboratory Control Sample (LCS)
12033078	Laboratory Control Sample Duplicate (LCSD)
20534001	2210315-001J R6 North-20221005
20534002	2210315-002J R6 South-20221006

The samples in this SDG were analyzed on an "as received" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by Cape Fear Analytical LLC (CFA) as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with CF-OA-E-003 REV# 10.

Raw data reports are processed and reviewed by the analyst using the TargetLynx software package.

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this sample delivery group (SDG).

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (ICV or CCV) met the acceptance criteria.

Quality Control (QC) Information

Certification Statement

The test results presented in this document are certified to meet all requirements of the 2009 TNI Standard.

Method Blank (MB) Statement

The MB(s) analyzed with this SDG met the acceptance criteria.

Surrogate Recoveries

All surrogate recoveries were within the established acceptance criteria for this SDG.

Laboratory Control Sample (LCS) Recovery

The LCS spike recoveries met the acceptance limits.

Laboratory Control Sample Duplicate (LCSD) Recovery

The LCSD spike recoveries met the acceptance limits.

LCS/LCSD Relative Percent Difference (RPD) Statement

The RPD(s) between the LCS and LCSD met the acceptance limits.

QC Sample Designation

A matrix spike and matrix spike duplicate analysis was not required for this SDG.

Technical Information

Holding Time Specifications

CFA assigns holding times based on the associated methodology, which assigns the date and time from sample collection. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this SDG did not require dilutions.

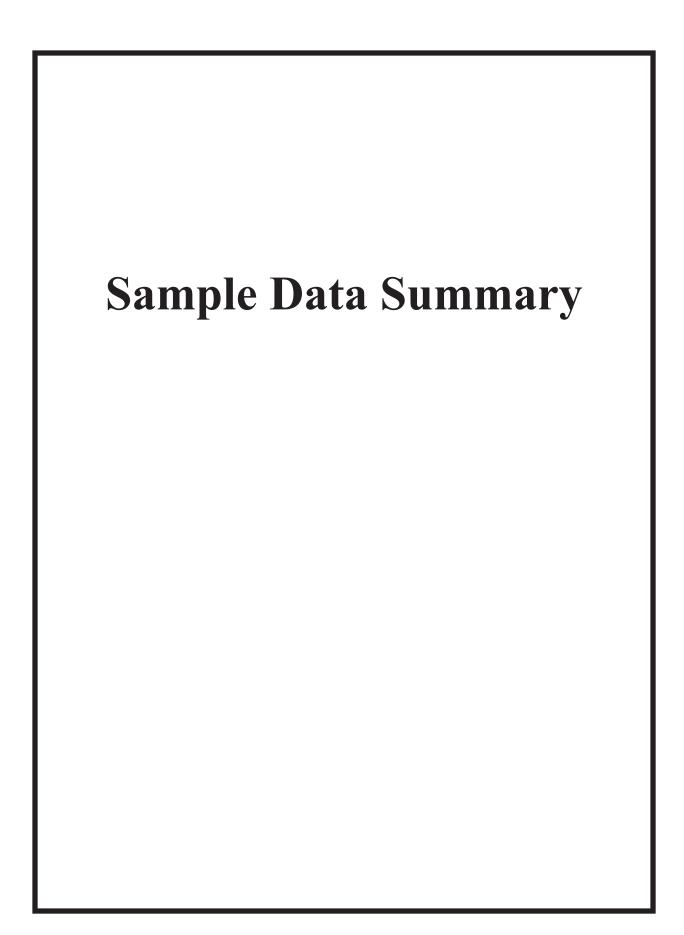
Sample Re-extraction/Re-analysis

Re-extractions or re-analyses were not required in this SDG.

Miscellaneous Information

Manual Integrations

Manual integrations were required for data files in this SDG. Certain standards and QC samples required manual integrations to correctly position the baseline as set in the calibration standard


injections. Where manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this fraction.

System Configuration

This analysis was performed on the following instrument configuration:

Instrument ID Instrument System Configuration Column ID Column Description

HRP875_1 PCB Analysis PCB Analysis SPB-Octyl 30m x 0.25mm, 0.25um

Cape Fear Analytical, LLC

3306 Kitty Hawk Road Suite 120, Wilmington, NC 28405 - (910) 795-0421 - www.capefearanalytical.com

Certificate of Analysis Report for

HALL001 Hall Environmental Analysis Laboratory

Client SDG: 2210315 CFA Work Order: 20534

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- B The target analyte was detected in the associated blank.
- C Congener has coeluters. When Cxxx, refer to congener number xxx for data
- J Value is estimated
- U Analyte was analyzed for, but not detected above the specified detection limit.

Review/Validation

Cape Fear Analytical requires all analytical data to be verified by a qualified data reviewer.

The following data validator verified the information presented in this case narrative:

mann Signature:

Name: Alexis Finks

Date: 23 NOV 2022

Title: Data Validator

		PCB Congeners Certificate of Analysis Sample Summary				Page 1	of 8
SDG Number: Lab Sample ID: Client Sample:	2210315 20534001 1668A Water	Client: Date Collected: Date Received:	HALL001 10/05/2022 12:15 10/07/2022 09:47		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date:	2210315-001J R6 North-20221005 51323 11/11/2022 21:11 408pcp222 7 0	Method: Analyst:	EPA Method 1668A MLL		Prep Basis: Instrument: Dilution:	As Received HRP875 1	
Data File: Prep Batch: Prep Date:	d08nov22a_7-9 51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 876.4 mL		Prep SOP Ref:		
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
2051-60-7 1-N	MoCB	U	ND	pg/L	6.00	114	
2051-61-8 2-N	MoCB	U	ND	pg/L	7.44	114	
2051-62-9 3-N	MoCB	U	ND	pg/L	4.95	114	
13029-08-8 4-D	DiCB	U	ND	pg/L	14.3	114	
16605-91-7 5-D	DiCB	U	ND	pg/L	11.3	114	
25569-80-6 6-E	DiCB	U	ND	pg/L	8.42	114	
33284-50-3 7-E	DiCB	U	ND	pg/L	8.40	114	
	DiCB	U	ND	pg/L	7.33	114	
	DiCB	U	ND	pg/L	10.8	114	
	DiCB	U	ND	pg/L	7.01	114	
2050-67-1 11-	DiCB	J	33.7	pg/L	9.79	114	
	DiCB	CU	ND	pg/L	9.11	228	
	DiCB	C12					
	DiCB	U	ND	pg/L	9.15	114	
	-DiCB	U	ND	pg/L	12.1	114	
	TrCB	U	ND	pg/L	3.99	114	
	TrCB	U	ND	pg/L	4.79	114	
	TrCB	CJ	6.39	pg/L	4.13	228	
	TrCB	U	ND	pg/L	5.75	114	
	TrCB	BCJ	11.3	pg/L	3.58	228	
	-TrCB	CU J	ND	pg/L	3.13	228	
	-TrCB		4.47 ND	pg/L	3.54	114	
	-TrCB TrCP	U	ND	pg/L	3.31 4.40	114 114	
	-TrCB	U U	ND ND	pg/L	4.40 2.97		
	TrCB TrCB	CU	ND	pg/L pg/L	3.45	114 228	
	TrCB	U	ND	pg/L pg/L	3.43	114	
	TrCB	C20	112	PR/L	5.12	117	
	TrCB	C26					
	TrCB	C18					
	TrCB	U	ND	pg/L	6.60	114	
		U	ND	pg/L	3.29		

Comments:

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

U Analyte was analyzed for, but not detected above the specified detection limit.

				Page 2	of 8		
SDG Number: Lab Sample II Client Sample	2210315 20534001 1668A Water	Client: Date Collected: Date Received:	HALL001 10/05/2022 12:15 10/07/2022 09:47		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date:	2210315-001J R6 <mark>North</mark> -20221005 51323 11/11/2022 21:11	Method: Analyst:	EPA Method 1668A MLL		Prep Basis: Instrument:	As Received HRP875	
Data File: Prep Batch: Prep Date:	d08nov22a_7-9 51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 876.4 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
38444-86-9	33-TrCB	C21					
37680-68-5	34-TrCB	U	ND	pg/L	3.86	114	
37680-69-6	35-TrCB	U	ND	pg/L	4.70	114	
38444-87-0	36-TrCB	U	ND	pg/L	4.11	114	
38444-90-5	37-TrCB	U	ND	pg/L	4.11	114	
53555-66-1	38-TrCB	U	ND	pg/L	4.61	114	
	39-TrCB	U	ND	pg/L	4.70	114	
	40-TeCB	CU	ND	pg/L	5.59	228	
	41-TeCB	U	ND	pg/L	9.04	114	
	42-TeCB	U	ND	pg/L	5.80	114	
	43-TeCB	U	ND	pg/L	7.17	114	
	44-TeCB	CU	ND	pg/L	8.26	342	
	45-TeCB	CJ	4.22	pg/L	2.65	228	
	46-TeCB	U	ND	pg/L	2.58	114	
	47-TeCB	C44		_			
	48-TeCB	U	ND	pg/L	6.16	114	
	49-TeCB	CU	ND	pg/L	5.00	228	
	50-TeCB	CU	ND	pg/L	2.51	228	
	51-TeCB	C45 BJ	0.44	/1	(())	220	
	52-TeCB		8.44	pg/L	6.69	228	
	53-TeCB	C50 U	ND	# ~/I	1.90	114	
	54-TeCB	U	ND	pg/L	1.89	114	
	55-TeCB 56-TeCB	U	ND	pg/L pg/L	3.77 3.97	114	
	57-TeCB	U	ND	pg/L pg/L	3.61	114	
	58-TeCB	U	ND	pg/L pg/L	3.70	114	
	59-TeCB	CU	ND	pg/L pg/L	4.61	342	
	60-TeCB	U	ND	pg/L pg/L	3.81	114	
	61-TeCB	CU	ND	pg/L pg/L	11.1	456	
	62-TeCB	C59		r5/ L			
	63-TeCB	U	ND	pg/L	3.70	114	
	64-TeCB	U	ND	pg/L	4.47	114	
	·····	U	- 120	19 D			

Comments:

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

U Analyte was analyzed for, but not detected above the specified detection limit.

		PCB Congeners Certificate of Analysis Sample Summary				Page 3	of 8
SDG Number: Lab Sample ID: Client Sample:	1668A Water 2210315-001J R6 <mark>North</mark> -20221005	Client: Date Collected: Date Received:	HALL001 10/05/2022 12:15 10/07/2022 09:47		Project: Matrix:	HALL00113 WATER As Received	
Client ID:					Prep Basis:		
Batch ID: Run Date: Data File:	51323 11/11/2022 21:11 d08nov22a_7-9	Method: Analyst:	EPA Method 1668A MLL		Instrument: Dilution:	HRP875 1	
Prep Batch: Prep Date:	51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 876.4 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
33284-54-7 65-	-TeCB	C44					
32598-10-0 66-	-TeCB	J	4.52	pg/L	3.95	114	
73575-53-8 67-	-TeCB	U	ND	pg/L	3.08	114	
	-TeCB	U	ND	pg/L	3.35	114	
	-TeCB	C49					
	-TeCB	C61					
	-TeCB	C40					
	-TeCB	U	ND	pg/L	3.63	114	
	-TeCB	U	ND	pg/L	4.27	114	
	-TeCB	C61					
	-TeCB	C59					
	-TeCB	C61	ND	/1	2.72	114	
	-TeCB	U	ND	pg/L	3.72	114	
	-TeCB	U U	ND ND	pg/L	4.56 3.51	114 114	
	-TeCB	U	ND	pg/L		114	
	-TeCB -TeCB	U	ND	pg/L pg/L	3.31 3.47	114	
	-PeCB	U	ND	pg/L pg/L	5.04	114	
	-PeCB	U	ND	pg/L pg/L	5.77	114	
	-PeCB	U	ND	pg/L	4.27	114	
	-PeCB	CU	ND	pg/L	3.56	342	
	-PeCB	BCJ	7.80	pg/L	3.61	685	
	-PeCB	C86					
	-PeCB	CU	ND	pg/L	4.31	228	
	-PeCB	U	ND	pg/L	4.95	114	
68194-07-0 90-	-PeCB	CU	ND	pg/L	7.17	342	
68194-05-8 91-	-PeCB	C88					
52663-61-3 92-	-PeCB	U	ND	pg/L	4.75	114	
73575-56-1 93-	-PeCB	CU	ND	pg/L	3.95	228	
73575-55-0 94-	-PeCB	U	ND	pg/L	4.02	114	
38379-99-6 95-	-PeCB	U	ND	pg/L	4.47	114	
73575-54-9 96-	-PeCB	U	ND		2.53		

Comments:

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

U Analyte was analyzed for, but not detected above the specified detection limit.

		Certific	Congeners ate of Analysis le Summary			Page 4	of 8
SDG Number: Lab Sample ID: Client Sample:	2210315 20534001 1668A Water	Client: Date Collected: Date Received:	HALL001 10/05/2022 12:15 10/07/2022 09:47		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date:	2210315-001J R6 <mark>North</mark> -20221005 51323 11/11/2022 21:11	Method: Analyst:	EPA Method 1668A MLL		Prep Basis: Instrument:	As Received HRP875	
Data File: Prep Batch: Prep Date:	d08nov22a_7-9 51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 876.4 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
41464-51-1 97-	-PeCB	C86					
60233-25-2 98-	-PeCB	CU	ND	pg/L	3.86	228	
38380-01-7 99-	-PeCB	U	ND	pg/L	3.81	114	
39485-83-1 100	0-PeCB	C93					
37680-73-2 101	1-PeCB	C90					
68194-06-9 102	2-PeCB	C98					
60145-21-3 103	3-PeCB	U	ND	pg/L	4.06	114	
56558-16-8 104	4-PeCB	U	ND	pg/L	2.01	114	
32598-14-4 105	5-PeCB	U	ND	pg/L	4.08	114	
70424-69-0 106	6-PeCB	U	ND	pg/L	4.13	114	
70424-68-9 107	7-PeCB	U	ND	pg/L	3.42	114	
70362-41-3 108	8-PeCB	CU	ND	pg/L	4.20	228	
74472-35-8 109	9-PeCB	C86					
38380-03-9 110	0-PeCB	CJ	6.91	pg/L	3.31	228	
39635-32-0 111	1-PeCB	U	ND	pg/L	3.15	114	
74472-36-9 112	2-PeCB	U	ND	pg/L	2.85	114	
68194-10-5 113	3-PeCB	C90					
74472-37-0 114	4-PeCB	U	ND	pg/L	3.72	114	
74472-38-1 115	5-PeCB	C110					
18259-05-7 116	6-PeCB	C85					
68194-11-6 117	7-PeCB	C85					
31508-00-6 118	8-PeCB	U	ND	pg/L	5.41	114	
	9-PeCB	C86					
68194-12-7 120	0-PeCB	U	ND	pg/L	3.33	114	
56558-18-0 121	1-PeCB	U	ND	pg/L	2.99	114	
76842-07-4 122	2-PeCB	U	ND	pg/L	5.39	114	
65510-44-3 123	3-PeCB	U	ND	pg/L	3.42	114	
70424-70-3 124	4-PeCB	C108					
74472-39-2 125	5-PeCB	C86					
57465-28-8 126	6-PeCB	U	ND	pg/L	4.52	114	
39635-33-1 127	7-PeCB	U	ND	pg/L	4.47	114	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis lle Summary			Page 5	of 8
SDG Number: Lab Sample ID Client Sample:		Client: Date Collected: Date Received:	HALL001 10/05/2022 12:15 10/07/2022 09:47		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date:	2210315-001J R6 North-20221005 51323 11/11/2022 21:11	Method: Analyst:	EPA Method 1668A MLL		Prep Basis: Instrument: Dilution:	As Received HRP875 1	
Data File: Prep Batch: Prep Date:	d08nov22a_7-9 51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 876.4 mL		Prep SOP Ref:		
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
55215-18-4 12	29-HxCB	CJ	9.97	pg/L	4.27	342	
52663-66-8 13	30-HxCB	U	ND	pg/L	4.95	114	
61798-70-7 13	31-HxCB	U	ND	pg/L	4.88	114	
38380-05-1 13	32-HxCB	U	ND	pg/L	4.59	114	
35694-04-3 13	33-HxCB	U	ND	pg/L	4.70	114	
52704-70-8 13	34-HxCB	U	ND	pg/L	5.16	114	
52744-13-5 13	35-HxCB	CJ	5.18	pg/L	3.42	228	
38411-22-2 13	36-HxCB	U	ND	pg/L	2.49	114	
	37-HxCB	U	ND	pg/L	4.77	114	
	38-HxCB	C129					
	39-HxCB	CU	ND	pg/L	3.99	228	
	40-HxCB	C139					
	41-HxCB	U	ND	pg/L	4.04	114	
	42-HxCB	U	ND	pg/L	4.86	114	
	43-HxCB	U	ND	pg/L	4.56	114	
	44-HxCB	U	ND	pg/L	3.38	114	
	45-HxCB	U	ND	pg/L	2.35	114	
	46-HxCB	U	ND	pg/L	3.90	114	
	47-HxCB	CJ	5.73	pg/L	3.88	228	
	48-HxCB	U	ND	pg/L	3.26	114	
	49-HxCB	C147					
	50-HxCB	U	ND	pg/L	2.19	114	
	51-HxCB	C135	ND		2.44	114	
	52-HxCB	U	ND	pg/L	2.44	114	
	53-HxCB	BCJ	6.71 ND	pg/L	3.56	228	
	54-HxCB	U U	ND ND	pg/L	2.65	114	
	55-HxCB 56-HxCB	CU	ND ND	pg/L	1.87 3.40	114 228	
	50-HXCB 57-HXCB	C156	IND.	pg/L	5.40	220	
	57-пхсв 58-НхСВ	U U	ND	pg/L	2.97	114	
	59-HxCB	U	ND	pg/L pg/L	2.97	114	
	60-НхСВ	U	ND		3.63	114	
+1411-02-3 10	00-11ACD	U	ND	pg/L	5.05	114	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis le Summary			Page 6	of 8
SDG Number: Lab Sample II Client Sample:): 20534001	Client: Date Collected: Date Received:	HALL001 10/05/2022 12:15 10/07/2022 09:47		Project: Matrix:	HALL00113 WATER	
Client ID:	2210315-001J R6 <mark>North</mark> -20221005				Prep Basis:	As Received	
Batch ID: Run Date: Data File:	51323 11/11/2022 21:11 d08nov22a_7-9	Method: Analyst:	EPA Method 1668A MLL		Instrument: Dilution:	HRP875 1	
Prep Batch: Prep Date:	51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 876.4 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
74472-43-8 1	161-HxCB	U	ND	pg/L	3.26	114	
39635-34-2 1	162-HxCB	U	ND	pg/L	2.78	114	
74472-44-9 1	163-HxCB	C129					
74472-45-0 1	164-HxCB	U	ND	pg/L	3.10	114	
74472-46-1 1	165-HxCB	U	ND	pg/L	3.63	114	
41411-63-6 1	166-HxCB	C128					
52663-72-6 1	167-HxCB	U	ND	pg/L	2.42	114	
59291-65-5 1	168-HxCB	C153					
32774-16-6 1	169-HxCB	U	ND	pg/L	3.01	114	
35065-30-6 1	170-НрСВ	U	ND	pg/L	3.67	114	
52663-71-5 1	171-НрСВ	CU	ND	pg/L	3.56	228	
	172-НрСВ	U	ND	pg/L	3.65	114	
68194-16-1 1	173-НрСВ	C171					
	174-НрСВ	U	ND	pg/L	3.95	114	
	175-HpCB	U	ND	pg/L	3.19	114	
	176-НрСВ	U	ND	pg/L	2.46	114	
	177-НрСВ	U	ND	pg/L	3.61	114	
	178-НрСВ	U	ND	pg/L	3.51	114	
	179-HpCB	U	ND	pg/L	2.37	114	
	180-HpCB	CU	ND	pg/L	5.77	228	
	181-HpCB	U	ND	pg/L	3.45	114	
	182-HpCB	U	ND	pg/L	3.08	114	
	183-HpCB	CJ	3.54	pg/L	3.26	228	
	184-HpCB	U C182	ND	pg/L	2.33	114	
	185-HpCB	C183 U	ND	n~/I	2.40	114	
	186-HpCB 187-HpCB	J	ND 3.13	pg/L	2.49	114 114	
	187-прСВ 188-НрСВ	J U	5.15 ND	pg/L	3.08 2.19	114	
	188-прсв 189-ПрСВ	U	ND	pg/L	2.19	114	
	189-прСВ 190-НрСВ	U	ND	pg/L	2.36	114	
	190-прСВ	U	ND	pg/L pg/L	2.83	114	
	192-НрСВ	U	ND		2.03	114	
1-7412-31-0 1	172-ripOD	U	IND	pg/L	2.74	114	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

-	-					-	
		Certific	Congeners cate of Analysis ole Summary			Page 7	of 8
SDG Numbe Lab Sample Client Samp	ID: 20534001	Client: Date Collected: Date Received:	HALL001 10/05/2022 12:15 10/07/2022 09:47		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date: Data File:	2210315-001J R6 North-20221005 51323 11/11/2022 21:11 d08nov22a 7-9	Method: Analyst:	EPA Method 1668A MLL		Prep Basis: Instrument: Dilution:	As Received HRP875 1	
Prep Batch: Prep Date:	51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 876.4 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
69782-91-8	193-НрСВ	C180					
35694-08-7	194-OcCB	U	ND	pg/L	4.06	114	
52663-78-2	195-OcCB	U	ND	pg/L	2.74	114	
42740-50-1	196-OcCB	U	ND	pg/L	3.04	114	
33091-17-7	197-OcCB	CJ	3.10	pg/L	2.33	228	
68194-17-2	198-OcCB	CJ	4.91	pg/L	3.26	228	
52663-75-9	199-OcCB	C198					

68194-17-2	198-OcCB	CJ	4.91	pg/L	3.26	228
52663-75-9	199-OcCB	C198				
52663-73-7	200-OcCB	C197				
40186-71-8	201-OcCB	U	ND	pg/L	2.17	114
2136-99-4	202-OcCB	U	ND	pg/L	2.35	114
52663-76-0	203-ОсСВ	U	ND	pg/L	3.10	114
74472-52-9	204-OcCB	U	ND	pg/L	2.24	114
74472-53-0	205-OcCB	U	ND	pg/L	1.94	114
40186-72-9	206-NoCB	U	ND	pg/L	4.06	114
52663-79-3	207-NoCB	U	ND	pg/L	2.81	114
52663-77-1	208-NoCB	U	ND	pg/L	2.42	114
2051-24-3	209-DeCB	U	ND	pg/L	3.01	114
1336-36-3	Total PCB Congeners	J	<mark>13</mark> 0	pg/L		114

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1-MoCB		896	2280	pg/L	39.3	(15%-150%)
13С-3-МоСВ		1040	2280	pg/L	45.7	(15%-150%)
13C-4-DiCB		1100	2280	pg/L	48.0	(25%-150%)
13C-15-DiCB		1650	2280	pg/L	72.2	(25%-150%)
13C-19-TrCB		1390	2280	pg/L	61.0	(25%-150%)
13C-37-TrCB		1450	2280	pg/L	63.6	(25%-150%)
13C-54-TeCB		1430	2280	pg/L	62.6	(25%-150%)
13C-77-TeCB		1840	2280	pg/L	80.8	(25%-150%)
13C-81-TeCB		1900	2280	pg/L	83.2	(25%-150%)
13C-104-PeCB		1320	2280	pg/L	57.7	(25%-150%)
13C-105-PeCB		1480	2280	pg/L	64.7	(25%-150%)
13C-114-PeCB		1470	2280	pg/L	64.4	(25%-150%)
13C-118-PeCB		1370	2280	pg/L	60.1	(25%-150%)
13C-123-PeCB		1590	2280	pg/L	69.5	(25%-150%)
13C-126-PeCB		1530	2280	pg/L	66.9	(25%-150%)
13C-155-HxCB		1480	2280	pg/L	64.7	(25%-150%)
13C-156-HxCB	С	2990	4560	pg/L	65.5	(25%-150%)
13C-157-HxCB	C156L					
13C-167-HxCB		1470	2280	pg/L	64.6	(25%-150%)
13C-169-HxCB		1480	2280	pg/L	64.7	(25%-150%)
13С-188-НрСВ		1490	2280	pg/L	65.2	(25%-150%)
13С-189-НрСВ		1480	2280	pg/L	64.9	(25%-150%)

of 8

Page 8

PCB Congeners Certificate of Analysis Sample Summary

		Samp	ole Summary			
SDG Number:	2210315	Client:	HALL001		Project:	HALL00113
Lab Sample ID:	20534001	Date Collected:	10/05/2022 12:15		Matrix:	WATER
Client Sample:	1668A Water	Date Received:	10/07/2022 09:47			
Client ID:	2210315-001J R6 North-20221005				Prep Basis:	As Received
Batch ID:	51323	Method:	EPA Method 1668A			
Run Date:	11/11/2022 21:11	Analyst:	MLL		Instrument:	HRP875
Data File:	d08nov22a_7-9				Dilution:	1
Prep Batch:	51321	Prep Method:	SW846 3520C		Prep SOP Ref:	CF-OA-E-001
Prep Date:	02-NOV-22	Prep Aliquot:	876.4 mL			
CAS No.	Parmname	Qual	Result	Units	EDL	PQL

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-202-OcCB		1460	2280	pg/L	64.0	(25%-150%)
3С-205-ОсСВ		1780	2280	pg/L	78.1	(25%-150%)
3C-206-NoCB		1730	2280	pg/L	76.0	(25%-150%)
3C-208-NoCB		1670	2280	pg/L	73.1	(25%-150%)
3C-209-DeCB		1650	2280	pg/L	72.4	(25%-150%)
3C-28-TrCB		1610	2280	pg/L	70.7	(30%-135%)
3C-111-PeCB		1790	2280	pg/L	78.5	(30%-135%)
8С-178-НрСВ		2090	2280	pg/L	91.6	(30%-135%)

Comments:

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis lle Summary			Page 1	of 8
SDG Number: Lab Sample ID Client Sample:): 20534002	Client: Date Collected: Date Received:	HALL001 10/06/2022 09:05 10/07/2022 09:47		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date:	2210315-002J R6 South-20221006 51323 11/11/2022 22:21	Method: Analyst:	EPA Method 1668A MLL		Prep Basis: Instrument: Dilution:	As Received HRP875 1	
Data File: Prep Batch: Prep Date:	d08nov22a_7-10 51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 952.9 mL		Prep SOP Ref:		
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
2051-60-7 1	1-MoCB	U	ND	pg/L	6.23	105	
2051-61-8 2	2-MoCB	U	ND	pg/L	7.85	105	
2051-62-9 3	3-MoCB	U	ND	pg/L	5.33	105	
13029-08-8 4	4-DiCB	U	ND	pg/L	12.7	105	
16605-91-7 5	5-DiCB	U	ND	pg/L	11.7	105	
25569-80-6 6	6-DiCB	U	ND	pg/L	8.73	105	
33284-50-3 7	7-DiCB	U	ND	pg/L	8.69	105	
34883-43-7 8	8-DiCB	U	ND	pg/L	7.60	105	
34883-39-1 9	9-DiCB	U	ND	pg/L	11.2	105	
33146-45-1 1	10-DiCB	U	ND	pg/L	6.40	105	
2050-67-1 1	11-DiCB	J	86.7	pg/L	10.1	105	
2974-92-7 1	12-DiCB	CU	ND	pg/L	9.42	210	
2974-90-5 1	13-DiCB	C12					
34883-41-5 1	14-DiCB	U	ND	pg/L	9.49	105	
2050-68-2 1	15-DiCB	U	ND	pg/L	15.0	105	
38444-78-9 1	16-TrCB	U	ND	pg/L	4.32	105	
37680-66-3 1	17-TrCB	U	ND	pg/L	5.18	105	
37680-65-2 1	18-TrCB	CU	ND	pg/L	7.68	210	
38444-73-4 1	19-TrCB	U	ND	pg/L	6.02	105	
38444-84-7 2	20-TrCB	BCJ	16.7	pg/L	3.88	210	
55702-46-0 2	21-TrCB	CU	ND	pg/L	6.86	210	
38444-85-8 2	22-TrCB	U	ND	pg/L	6.59	105	
55720-44-0 2	23-TrCB	U	ND	pg/L	3.59	105	
55702-45-9 2	24-TrCB	U	ND	pg/L	4.76	105	
55712-37-3 2	25-TrCB	U	ND	pg/L	3.21	105	
38444-81-4 2	26-TrCB	CU	ND	pg/L	3.71	210	
38444-76-7 2	27-TrCB	U	ND	pg/L	4.03	105	
7012-37-5 2	28-TrCB	C20					
15862-07-4 2	29-TrCB	C26					
35693-92-6 3	30-TrCB	C18					
16606-02-3 3	31-TrCB	U	ND	pg/L	11.3	105	
38444-77-8 3	32-TrCB	U	ND	pg/L	3.76	105	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners cate of Analysis de Summary		Page 2	of 8	
SDG Number: Lab Sample ID: Client Sample:	2210315 20534002 1668A Water	Client: Date Collected: Date Received:	HALL001 10/06/2022 09:05 10/07/2022 09:47		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date:	2210315-002J R6 South-20221006 51323 11/11/2022 22:21	Method: Analyst:	EPA Method 1668A MLL		Prep Basis: Instrument: Dilution:	As Received HRP875 1	
Data File: Prep Batch: Prep Date:	d08nov22a_7-10 51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 952.9 mL		Prep SOP Ref:		
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
38444-86-9 33-	-TrCB	C21					
37680-68-5 34-	-TrCB	U	ND	pg/L	4.18	105	
37680-69-6 35-	-TrCB	U	ND	pg/L	6.57	105	
38444-87-0 36-	-TrCB	U	ND	pg/L	5.71	105	
38444-90-5 37-	-TrCB	J	7.98	pg/L	5.81	105	
53555-66-1 38-	-TrCB	U	ND	pg/L	6.44	105	
38444-88-1 39-	-TrCB	U	ND	pg/L	6.55	105	
38444-93-8 40-	-TeCB	CU	ND	pg/L	5.79	210	
52663-59-9 41-	-TeCB	U	ND	pg/L	9.78	105	
36559-22-5 42-	-TeCB	U	ND	pg/L	6.28	105	
70362-46-8 43-	-TeCB	U	ND	pg/L	7.77	105	
41464-39-5 44-	-TeCB	CJ	18.1	pg/L	6.07	315	
70362-45-7 45-	-TeCB	CJ	5.08	pg/L	3.25	210	
41464-47-5 46-	-TeCB	U	ND	pg/L	3.17	105	
2437-79-8 47-	-TeCB	C44					
70362-47-9 48-	-TeCB	U	ND	pg/L	6.67	105	
41464-40-8 49-	-TeCB	CU	ND	pg/L	7.70	210	
62796-65-0 50-	-TeCB	CU	ND	pg/L	3.30	210	
68194-04-7 51-	-TeCB	C45					
35693-99-3 52-	-TeCB	BJ	25.7	pg/L	7.26	210	
41464-41-9 53-	-TeCB	C50					
15968-05-5 54-	-TeCB	U	ND	pg/L	2.14	105	
74338-24-2 55-	-TeCB	U	ND	pg/L	3.69	105	
41464-43-1 56-	-TeCB	J	8.37	pg/L	3.92	105	
	-TeCB	U	ND	pg/L	3.57	105	
	-TeCB	U	ND	pg/L	3.65	105	
74472-33-6 59-	-TeCB	CU	ND	pg/L	5.00	315	
	-TeCB	U	ND	pg/L	4.01	105	
33284-53-6 61-	-TeCB	CU	ND	pg/L	33.6	420	
54230-22-7 62-	-TeCB	C59					
74472-34-7 63-	-TeCB	U	ND	pg/L	3.63	105	
52663-58-8 64-	-TeCB	J	8.08	pg/L	4.85	105	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis lle Summary			Page 3	of 8
SDG Number: Lab Sample ID: Client Sample:	2210315 20534002 1668A Water	Client: Date Collected: Date Received:	HALL001 10/06/2022 09:05 10/07/2022 09:47		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID:	2210315-002J R6 South-20221006 51323	Method:	EPA Method 1668A		Prep Basis:	As Received	
Run Date: Data File:	11/11/2022 22:21 d08nov22a_7-10	Analyst:	MLL		Instrument: Dilution:	HRP875 1	
Prep Batch: Prep Date:	51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 952.9 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
33284-54-7 65-	-TeCB	C44					
	-TeCB	J	12.8	pg/L	3.88	105	
73575-53-8 67-	-TeCB	U	ND	pg/L	3.04	105	
	-TeCB	U	ND	pg/L	3.32	105	
	-TeCB	C49					
	-TeCB	C61					
	-TeCB	C40		_			
	-TeCB	U	ND	pg/L	3.59	105	
	-TeCB	U	ND	pg/L	4.62	105	
	-TeCB	C61					
	-TeCB -TeCB	C59 C61					
	-TeCB	J	4.11	ng/I	3.80	105	
	-TeCB	, U	4.11 ND	pg/L pg/L	4.49	105	
	-TeCB	U	ND	pg/L pg/L	3.46	105	
	-TeCB	U	ND	pg/L pg/L	3.40	105	
	-TeCB	U	ND	pg/L	3.51	105	
	-PeCB	U	ND	pg/L	7.64	105	
	-PeCB	U	ND	pg/L	8.73	105	
	-PeCB	J	9.00	pg/L	6.46	105	
	-PeCB	CJ	8.56	pg/L	5.39	315	
	-PeCB	BCJ	35.2	pg/L	5.48	630	
38380-02-8 87-	-PeCB	C86					
55215-17-3 88-	-PeCB	CU	ND	pg/L	6.53	210	
	-PeCB	U	ND	pg/L	7.49	105	
68194-07-0 90-	-PeCB	CJ	48.3	pg/L	5.56	315	
68194-05-8 91-	-PeCB	C88					
52663-61-3 92-	-PeCB	J	8.54	pg/L	7.20	105	
73575-56-1 93-	-PeCB	CU	ND	pg/L	5.98	210	
73575-55-0 94-	-PeCB	U	ND	pg/L	6.09	105	
38379-99-6 95-	-PeCB	J	37.5	pg/L	6.76	105	
73575-54-9 96-	-PeCB	U	ND	pg/L	2.92	105	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis lle Summary			Page 4	of 8
SDG Number: Lab Sample ID: Client Sample:	2210315 20534002 1668A Water	Client: Date Collected: Date Received:	HALL001 10/06/2022 09:05 10/07/2022 09:47		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID:	2210315-002J R6 <mark>Sout</mark> h-20221006 51323	Method:	EPA Method 1668A		Prep Basis:	As Received	
Run Date:	11/11/2022 22:21	Analyst:	MLL		Instrument:	HRP875	
Data File: Prep Batch: Prep Date:	d08nov22a_7-10 51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 952.9 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
41464-51-1 97-1	PeCB	C86					
60233-25-2 98-1	PeCB	CU	ND	pg/L	5.83	210	
38380-01-7 99-1	PeCB	J	14.9	pg/L	5.77	105	
39485-83-1 100)-PeCB	C93					
37680-73-2 101	-PeCB	C90					
68194-06-9 102	2-PeCB	C98					
60145-21-3 103	-PeCB	U	ND	pg/L	6.15	105	
56558-16-8 104	-PeCB	U	ND	pg/L	2.27	105	
32598-14-4 105	-PeCB	J	16.5	pg/L	4.47	105	
70424-69-0 106	-PeCB	U	ND	pg/L	4.83	105	
70424-68-9 107	2-PeCB	U	ND	pg/L	4.30	105	
70362-41-3 108	B-PeCB	CU	ND	pg/L	4.91	210	
74472-35-8 109	D-PeCB	C86					
38380-03-9 110)-PeCB	CJ	59.8	pg/L	5.02	210	
39635-32-0 111	-PeCB	U	ND	pg/L	4.76	105	
74472-36-9 112	2-PeCB	U	ND	pg/L	4.32	105	
68194-10-5 113	-PeCB	C90					
74472-37-0 114	I-PeCB	U	ND	pg/L	4.37	105	
74472-38-1 115	-PeCB	C110					
18259-05-7 116	-PeCB	C85					
68194-11-6 117	2-PeCB	C85					
31508-00-6 118	B-PeCB	BJ	43.2	pg/L	4.64	105	
56558-17-9 119	D-PeCB	C86					
68194-12-7 120)-PeCB	U	ND	pg/L	5.06	105	
56558-18-0 121	-PeCB	U	ND	pg/L	4.53	105	
76842-07-4 122	2-PeCB	U	ND	pg/L	6.28	105	
65510-44-3 123	-PeCB	U	ND	pg/L	4.03	105	
70424-70-3 124	I-PeCB	C108					
74472-39-2 125	i-PeCB	C86					
57465-28-8 126	j-PeCB	U	ND	pg/L	5.10	105	
39635-33-1 127	2-PeCB	U	ND	pg/L	5.23	105	
38380-07-3 128	-HxCB	CJ	14.2	pg/L	7.35	210	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis le Summary			Page 5	of 8
SDG Number: Lab Sample ID Client Sample:	b: 20534002	Client: Date Collected: Date Received:	HALL001 10/06/2022 09:05 10/07/2022 09:47		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date: Data File:	2210315-002J R6 South-20221006 51323 11/11/2022 22:21 d08nov22a_7-10	Method: Analyst:	EPA Method 1668A MLL		Prep Basis: Instrument: Dilution: Breen SOB Defi	As Received HRP875 1 CE OA E 001	
Prep Batch: Prep Date:	51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 952.9 mL		Prep SOP Ref:	CF-0A-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
55215-18-4 1	29-HxCB	CJ	116	pg/L	8.00	315	
52663-66-8 1	30-HxCB	U	ND	pg/L	9.23	105	
61798-70-7 1	31-HxCB	U	ND	pg/L	9.15	105	
38380-05-1 1	32-HxCB	J	30.4	pg/L	8.56	105	
35694-04-3 1	33-HxCB	U	ND	pg/L	8.77	105	
52704-70-8 1	34-HxCB	U	ND	pg/L	9.63	105	
52744-13-5 1	35-HxCB	CJ	33.3	pg/L	4.64	210	
38411-22-2 1	36-HxCB	J	10.7	pg/L	3.36	105	
35694-06-5 1	37-HxCB	U	ND	pg/L	8.92	105	
35065-28-2 1	38-HxCB	C129					
56030-56-9 1	39-HxCB	CU	ND	pg/L	7.49	210	
59291-64-4 1	40-HxCB	C139					
52712-04-6 1	41-HxCB	J	20.9	pg/L	7.56	105	
41411-61-4 1	42-HxCB	U	ND	pg/L	9.09	105	
58194-15-0 1	43-HxCB	U	ND	pg/L	8.52	105	
58194-14-9 1	44-HxCB	J	6.00	pg/L	4.55	105	
74472-40-5 1	45-HxCB	U	ND	pg/L	3.19	105	
51908-16-8 1	46-HxCB	U	ND	pg/L	13.1	105	
58194-13-8 1	47-HxCB	CJ	68.6	pg/L	7.24	210	
74472-41-6 1	48-HxCB	U	ND	pg/L	4.37	105	
38380-04-0 1	49-HxCB	C147					
58194-08-1 1	50-HxCB	U	ND	pg/L	2.98	105	
52663-63-5 1	51-HxCB	C135					
58194-09-2 1	52-HxCB	U	ND	pg/L	3.30	105	
35065-27-1 1	53-HxCB	CJ	85.4	pg/L	6.67	210	
60145-22-4 1	54-HxCB	U	ND	pg/L	3.61	105	
3979-03-2 1	55-HxCB	U	ND	pg/L	2.67	105	
38380-08-4 1	56-HxCB	CU	ND	pg/L	10.9	210	
59782-90-7 1	57-HxCB	C156					
74472-42-7 1	58-HxCB	U	ND	pg/L	10.8	105	
39635-35-3 1	59-HxCB	U	ND	pg/L	4.16	105	
41411-62-5 1	60-HxCB	U	ND	pg/L	6.78	105	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis le Summary			Page 6	of 8
SDG Number: Lab Sample ID: Client Sample:	2210315 : 20534002 1668A Water	Client: Date Collected: Date Received:	HALL001 10/06/2022 09:05 10/07/2022 09:47		Project: Matrix:	HALL00113 WATER	
Client ID:	2210315-002J R6 <mark>South-</mark> 20221006				Prep Basis:	As Received	
Batch ID: Run Date: Data File:	51323 11/11/2022 22:21 d08nov22a_7-10	Method: Analyst:	EPA Method 1668A MLL		Instrument: Dilution:	HRP875 1	
Prep Batch: Prep Date:	51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 952.9 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
74472-43-8 16	51-HxCB	U	ND	pg/L	6.11	105	
	52-HxCB	U	ND	pg/L	4.13	105	
74472-44-9 16	53-HxCB	C129					
74472-45-0 16	64-HxCB	U	ND	pg/L	6.00	105	
	55-HxCB	U	ND	pg/L	6.78	105	
41411-63-6 16	56-HxCB	C128					
52663-72-6 16	57-HxCB	J	4.22	pg/L	3.65	105	
	58-HxCB	C153					
	59-HxCB	U	ND	pg/L	4.37	105	
	70-НрСВ	J	32.8	pg/L	3.86	105	
	71-НрСВ	CU	ND	pg/L	10.5	210	
	72-НрСВ	J	6.23	pg/L	3.84	105	
	73-HpCB	C171		-			
	74-HpCB	J	27.2	pg/L	3.38	105	
	75-HpCB	U	ND	pg/L	3.40	105	
	76-HpCB	U	ND	pg/L	3.74	105	
	77-HpCB	U	ND	pg/L	18.2	105	
	78-HpCB	U	ND	pg/L	8.50	105	
	79-HpCB	J	12.2	pg/L	2.52	105	
	30-HpCB	CJ U	63.2	pg/L	3.09	210	
	81-HpCB	U	ND	pg/L	3.63	105	
	32-НрСВ 33-НрСВ	CJ	ND 19.3	pg/L pg/L	3.27 3.44	105 210	
	33-прсв 34-прсв	U U	ND	pg/L pg/L	2.48	105	
	34-прСВ 35-НрСВ	C183	110	h8/г	2.40	105	
	36-НрСВ	U	ND	pg/L	2.64	105	
	87-НрСВ	J	33.5	pg/L pg/L	3.25	105	
	38-HpCB	, U	ND	pg/L pg/L	2.35	105	
	89-НрСВ	J	3.21	pg/L pg/L	3.04	105	
	90-НрСВ	J	6.07	pg/L pg/L	3.00	105	
	91-НрСВ	, U	ND	pg/L pg/L	2.79	105	
	92-НрСВ	U	ND	pg/L pg/L	3.13	105	
17/2-51-0 17	ng ngob	0	112	PR/L	5.15	105	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

Page 7

of 8

PCB Congeners	
Certificate of Analysis	
Sample Summary	

		Samp	ole Summary			
SDG Numbe Lab Sample Client Samp	ID: 20534002	Client: Date Collected: Date Received:	HALL001 10/06/2022 09:05 10/07/2022 09:47		Project: Matrix:	HALL00113 WATER
Client ID: Batch ID: Run Date:	2210315-002J R6 <mark>South</mark> -20221006 51323 11/11/2022 22:21	Method: Analyst:	EPA Method 1668A MLL		Prep Basis: Instrument:	As Received HRP875
Data File: Prep Batch: Prep Date:	d08nov22a_7-10 51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 952.9 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001
CAS No.	Parmname	Qual	Result	Units	EDL	PQL
69782-91-8	193-НрСВ	C180				
35694-08-7	194-OcCB	J	16.7	pg/L	3.15	105
52663-78-2	195-OcCB	U	ND	pg/L	6.67	105
42740-50-1	196-OcCB	U	ND	pg/L	8.71	105
33091-17-7	197-OcCB	CU	ND	pg/L	3.97	210
68194-17-2	198-OcCB	CU	ND	pg/L	16.3	210
52663-75-9	199-OcCB	C198				
52663-73-7	200-OcCB	C197				
40186-71-8	201-OcCB	U	ND	pg/L	2.92	105
2136-99-4	202-OcCB	U	ND	pg/L	3.61	105
52663-76-0	203-OcCB	J	9.93	pg/L	4.20	105
74472-52-9	204-OcCB	U	ND	pg/L	3.00	105
74472-53-0	205-OcCB	U	ND	pg/L	2.22	105
40186-72-9	206-NoCB	J	8.02	pg/L	3.82	105
52663-79-3	207-NoCB	U	ND	pg/L	2.85	105
52663-77-1	208-NoCB	U	ND	pg/L	2.98	105
2051-24-3	209-DeCB	U	ND	pg/L	5.18	105
1336-36-3	Total PCB Congeners	J	1100	pg/L		105

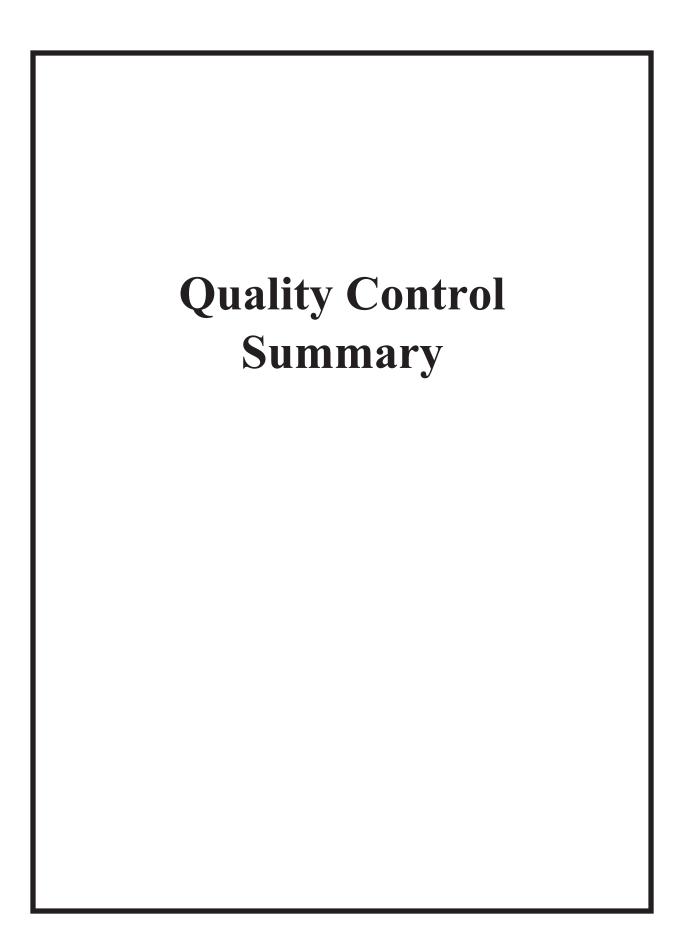
Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1-MoCB		886	2100	pg/L	42.2	(15%-150%)
13C-3-MoCB		1020	2100	pg/L	48.7	(15%-150%)
13C-4-DiCB		1130	2100	pg/L	53.8	(25%-150%)
13C-15-DiCB		1550	2100	pg/L	73.8	(25%-150%)
13C-19-TrCB		1330	2100	pg/L	63.5	(25%-150%)
13C-37-TrCB		1380	2100	pg/L	65.7	(25%-150%)
13C-54-TeCB		1390	2100	pg/L	66.4	(25%-150%)
13C-77-TeCB		1680	2100	pg/L	79.8	(25%-150%)
13C-81-TeCB		1770	2100	pg/L	84.2	(25%-150%)
13C-104-PeCB		1260	2100	pg/L	60.2	(25%-150%)
13C-105-PeCB		1460	2100	pg/L	69.7	(25%-150%)
13C-114-PeCB		1400	2100	pg/L	66.6	(25%-150%)
13C-118-PeCB		1310	2100	pg/L	62.5	(25%-150%)
13C-123-PeCB		1510	2100	pg/L	71.8	(25%-150%)
13C-126-PeCB		1520	2100	pg/L	72.5	(25%-150%)
13C-155-HxCB		1270	2100	pg/L	60.3	(25%-150%)
13C-156-HxCB	С	2670	4200	pg/L	63.5	(25%-150%)
13C-157-HxCB	C156L					
13C-167-HxCB		1310	2100	pg/L	62.3	(25%-150%)
13C-169-HxCB		1300	2100	pg/L	62.1	(25%-150%)
13С-188-НрСВ		1280	2100	pg/L	61.1	(25%-150%)
13С-189-НрСВ		1330	2100	pg/L	63.3	(25%-150%)

of 8

Page 8

PCB Congeners Certificate of Analysis Sample Summary

		Samp	ole Summary			
SDG Number:	2210315	Client:	HALL001		Project:	HALL00113
Lab Sample ID:	20534002	Date Collected:	10/06/2022 09:05		Matrix:	WATER
Client Sample:	1668A Water	Date Received:	10/07/2022 09:47			
Client ID:	2210315-002J R6 South-20221006				Prep Basis:	As Received
Batch ID:	51323	Method:	EPA Method 1668A			
Run Date:	11/11/2022 22:21	Analyst:	MLL		Instrument:	HRP875
Data File:	d08nov22a_7-10				Dilution:	1
Prep Batch:	51321	Prep Method:	SW846 3520C		Prep SOP Ref:	CF-OA-E-001
Prep Date:	02-NOV-22	Prep Aliquot:	952.9 mL			
CAS No.	Parmname	Qual	Result	Units	EDL	PQL


Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-202-OcCB		1260	2100	pg/L	60.1	(25%-150%)
13C-205-OcCB		1590	2100	pg/L	75.6	(25%-150%)
13C-206-NoCB		1610	2100	pg/L	76.8	(25%-150%)
3C-208-NoCB		1420	2100	pg/L	67.8	(25%-150%)
3C-209-DeCB		1590	2100	pg/L	75.8	(25%-150%)
3C-28-TrCB		1570	2100	pg/L	75.0	(30%-135%)
3C-111-PeCB		1650	2100	pg/L	78.5	(30%-135%)
3С-178-НрСВ		1800	2100	pg/L	85.9	(30%-135%)

Comments:

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

Page 1 of 3

PCB Congeners Surrogate Recovery Report

SDG Number: 2210315

Matrix Type: LIQUID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
2033077	LCS for batch 51321	13С-1-МоСВ		37.9	(15%-140%)
		13C-3-MoCB		43.8	(15%-140%)
		13C-4-DiCB		43.3	(30%-140%)
		13C-15-DiCB		65.1	(30%-140%)
		13C-19-TrCB		53.6	(30%-140%)
		13C-37-TrCB		61.0	(30%-140%)
		13C-54-TeCB		51.6	(30%-140%)
		13C-77-TeCB		64.6	(30%-140%)
		13C-81-TeCB		66.8	(30%-140%)
		13C-104-PeCB		60.0	(30%-140%)
		13C-105-PeCB		57.4	(30%-140%)
		13C-114-PeCB		56.9	(30%-140%)
		13C-118-PeCB		50.5	(30%-140%)
		13C-123-PeCB		58.0	(30%-140%)
		13C-126-PeCB		65.6	(30%-140%)
		13C-155-HxCB		57.6	(30%-140%)
		13C-156-HxCB	С	65.3	(30%-140%)
		13C-157-HxCB	C156L		
		13C-167-HxCB		65.4	(30%-140%)
		13C-169-HxCB		67.8	(30%-140%)
		13С-188-НрСВ		56.5	(30%-140%)
		13С-189-НрСВ		58.4	(30%-140%)
		13C-202-OcCB		61.1	(30%-140%)
		13C-205-OcCB		70.3	(30%-140%)
		13C-206-NoCB		69.1	(30%-140%)
		13C-208-NoCB		57.7	(30%-140%)
		13C-209-DeCB		68.4	(30%-140%)
		13C-28-TrCB		61.0	(40%-125%)
		13C-111-PeCB		64.1	(40%-125%)
		13С-178-НрСВ		73.2	(40%-125%)
033078	LCSD for batch 51321	13C-1-MoCB		27.2	(15%-140%)
		13C-3-MoCB		31.8	(15%-140%)
		13C-4-DiCB		32.8	(30%-140%)
		13C-15-DiCB		44.8	(30%-140%)
		13C-19-TrCB		41.9	(30%-140%)
		13C-37-TrCB		37.6	(30%-140%)
		13C-54-TeCB		37.5	(30%-140%)
		13C-77-TeCB		41.3	(30%-140%)
		13C-81-TeCB		43.7	(30%-140%)
		13C-104-PeCB		44.2	(30%-140%)
		13C-105-PeCB		43.2	(30%-140%)
		13C-114-PeCB		42.1	(30%-140%)
		13C-118-PeCB		38.2	(30%-140%)
		13C-123-PeCB		44.0	(30%-140%)
		13C-126-PeCB		42.9	(30%-140%)
		13C-155-HxCB		38.2	(30%-140%)
		13C-156-HxCB	С	41.2	(30%-140%)
		13C-157-HxCB	C156L		. ,
		13C-167-HxCB		41.8	(30%-140%)
		13C-169-HxCB		41.8	(30%-140%)
		13C-188-HpCB		39.7	(30%-140%)

Page 2 of 3

PCB Congeners Surrogate Recovery Report

SDG Number: 2210315

Matrix Type: LIQUID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
2033078	LCSD for batch 51321	13C-202-OcCB		39.0	(30%-140%)
		13C-205-OcCB		47.6	(30%-140%)
		13C-206-NoCB		46.5	(30%-140%)
		13C-208-NoCB		40.6	(30%-140%)
		13C-209-DeCB		46.0	(30%-140%)
		13C-28-TrCB		54.9	(40%-125%)
		13C-111-PeCB		61.1	(40%-125%)
		13С-178-НрСВ		63.3	(40%-125%)
033076	MB for batch 51321	13C-1-MoCB		33.3	(15%-150%)
		13C-3-MoCB		38.0	(15%-150%)
		13C-4-DiCB		38.1	(25%-150%)
		13C-15-DiCB		50.4	(25%-150%)
		13C-19-TrCB		45.8	(25%-150%)
		13C-37-TrCB		48.2	(25%-150%)
		13C-54-TeCB		43.6	(25%-150%)
		13C-77-TeCB		56.2	(25%-150%)
		13C-81-TeCB		60.0	(25%-150%)
		13C-104-PeCB		46.6	(25%-150%)
		13C-105-PeCB		48.6	(25%-150%)
		13C-114-PeCB		48.2	(25%-150%)
		13C-118-PeCB		44.1	(25%-150%)
		13C-123-PeCB		50.5	(25%-150%)
		13C-126-PeCB		50.6	(25%-150%)
		13C-155-HxCB		49.8	(25%-150%)
		13C-156-HxCB	С	56.2	(25%-150%)
		13C-157-HxCB	C156L		()
		13C-167-HxCB		55.7	(25%-150%)
		13C-169-HxCB		57.1	(25%-150%)
		13C-188-HpCB		49.5	(25%-150%)
		13C-189-HpCB		51.5	(25%-150%)
		13C-202-OcCB		51.8	(25%-150%)
		13C-205-OcCB		58.6	(25%-150%)
		13C-206-NoCB		57.5	(25%-150%)
		13C-208-NoCB		51.4	(25%-150%)
		13C-209-DeCB		57.7	(25%-150%)
		13C-28-TrCB		51.9	(30%-135%)
		13C-111-PeCB		55.2	(30%-135%)
		13С-178-НрСВ		62.0	(30%-135%)
534001	2210315-001J R6 North-20221005	13C-1-MoCB		39.3	(15%-150%)
		13C-3-MoCB		45.7	(15%-150%)
		13C-4-DiCB		48.0	(25%-150%)
		13C-15-DiCB		72.2	(25%-150%)
		13C-19-TrCB		61.0	(25%-150%)
		13C-37-TrCB		63.6	(25%-150%)
		13C-54-TeCB		62.6	(25%-150%)
		13C-77-TeCB		80.8	(25%-150%)
		13C-81-TeCB		83.2	(25%-150%)
		13C-104-PeCB		57.7	(25%-150%)
		13C-105-PeCB		64.7	(25%-150%)
		13C-114-PeCB		64.4	(25%-150%)
		13U-114-PEUD			

Page 3 of 3

PCB Congeners Surrogate Recovery Report

SDG Number: 2210315

Matrix Type: LIQUID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
0534001	2210315-001J R6 North-20221005	13C-123-PeCB		69.5	(25%-150%)
		13C-126-PeCB		66.9	(25%-150%)
		13C-155-HxCB		64.7	(25%-150%)
		13C-156-HxCB	С	65.5	(25%-150%)
		13C-157-HxCB	C156L		
		13C-167-HxCB		64.6	(25%-150%)
		13C-169-HxCB		64.7	(25%-150%)
		13C-188-HpCB		65.2	(25%-150%)
		13C-189-HpCB		64.9	(25%-150%)
		13C-202-OcCB		64.0	(25%-150%)
		13C-205-OcCB		78.1	(25%-150%)
		13C-206-NoCB		76.0	(25%-150%)
		13C-208-NoCB		73.1	(25%-150%)
		13C-209-DeCB		72.4	(25%-150%)
		13C-28-TrCB		70.7	(30%-135%)
		13C-111-PeCB		78.5	(30%-135%)
		13С-178-НрСВ		91.6	(30%-135%)
534002	2210315-002J R6 South-20221006	13C-1-MoCB		42.2	(15%-150%)
		13C-3-MoCB		48.7	(15%-150%)
		13C-4-DiCB		53.8	(25%-150%)
		13C-15-DiCB		73.8	(25%-150%)
		13C-19-TrCB		63.5	(25%-150%)
		13C-37-TrCB		65.7	(25%-150%)
		13C-54-TeCB		66.4	(25%-150%)
		13C-77-TeCB		79.8	(25%-150%)
		13C-81-TeCB		84.2	(25%-150%)
		13C-104-PeCB		60.2	(25%-150%)
		13C-105-PeCB		69.7	(25%-150%)
		13C-114-PeCB		66.6	(25%-150%)
		13C-118-PeCB		62.5	(25%-150%)
		13C-123-PeCB		71.8	(25%-150%)
		13C-126-PeCB		72.5	(25%-150%)
		13C-155-HxCB		60.3	(25%-150%)
		13C-156-HxCB	С	63.5	(25%-150%)
		13C-157-HxCB	C156L	05.5	(2570-15070)
		13C-167-HxCB	CIJOL	62.2	(250/ 1500/)
				62.3	(25%-150%)
		13C-169-HxCB		62.1	(25%-150%)
		13C-188-HpCB		61.1	(25%-150%) (25%-150%)
		13C-189-HpCB		63.3	(25%-150%)
		13C-202-OcCB		60.1	(25%-150%)
		13C-205-OcCB		75.6	(25%-150%)
		13C-206-NoCB		76.8	(25%-150%)
		13C-208-NoCB		67.8	(25%-150%)
		13C-209-DeCB		75.8	(25%-150%)
		13C-28-TrCB		75.0	(30%-135%)
		13C-111-PeCB		78.5	(30%-135%)
		13С-178-НрСВ		85.9	(30%-135%)

* Recovery outside Acceptance Limits

Column to be used to flag recovery values

D Sample Diluted

of 2

Page 1

PCB Congeners Quality Control Summary Spike Recovery Report

SDG Number:	2210315
Client ID:	LCS for batch 51321
Lab Sample ID:	12033077
Instrument:	HRP875
Analyst:	MLL

Sample Type: Laboratory Control Sample Matrix: WATER

Analysis Date: 11/10/2022 12:14 Prep Batch ID:51321

Dilution: 1 Batch ID: 51323 Spike

			Amount Added	Spike Conc.	Decouomy	Accontance	
CAS No.		Parmname	pg/L	pg/L	%	Acceptance Limits	
2051-60-7	LCS	1-MoCB	500	490	98.1	50-150	
2051-62-9	LCS	3-MoCB	500	498	99.6	50-150	
13029-08-8	LCS	4-DiCB	500	462	92.3	50-150	
2050-68-2	LCS	15-DiCB	500	513	103	50-150	
38444-73-4	LCS	19-TrCB	500	513	103	50-150	
38444-90-5	LCS	37-TrCB	500	483	96.6	50-150	
15968-05-5	LCS	54-TeCB	1000	1020	102	50-150	
32598-13-3	LCS	77-TeCB	1000	977	97.7	50-150	
70362-50-4	LCS	81-TeCB	1000	826	82.6	50-150	
56558-16-8	LCS	104-PeCB	1000	1010	101	50-150	
32598-14-4	LCS	105-PeCB	1000	924	92.4	50-150	
74472-37-0	LCS	114-PeCB	1000	1040	104	50-150	
31508-00-6	LCS	118-PeCB	1000	1110	111	50-150	
65510-44-3	LCS	123-PeCB	1000	926	92.6	50-150	
57465-28-8	LCS	126-PeCB	1000	993	99.3	50-150	
33979-03-2	LCS	155-HxCB	1000	1000	100	50-150	
38380-08-4	LCS	156-HxCB	2000 C	1980	98.9	50-150	
69782-90-7	LCS	157-HxCB	C15	6			
52663-72-6	LCS	167-HxCB	1000	1000	100	50-150	
32774-16-6	LCS	169-HxCB	1000	967	96.7	50-150	
74487-85-7	LCS	188-HpCB	1000	997	99.7	50-150	
39635-31-9	LCS	189-HpCB	1000	1010	101	50-150	
2136-99-4	LCS	202-OcCB	1500	1620	108	50-150	
74472-53-0	LCS	205-OcCB	1500	1450	96.4	50-150	
40186-72-9	LCS	206-NoCB	1500	1490	99.3	50-150	
52663-77-1	LCS	208-NoCB	1500	1590	106	50-150	
2051-24-3	LCS	209-DeCB	1500	1430	95.4	50-150	

Page 31 of 45 Work Order: 20534

of 2

Page 2

PCB Congeners Quality Control Summary Spike Recovery Report

SDG Number:	2210315
Client ID:	LCSD for batch 51321
Lab Sample ID:	12033078
Instrument:	HRP875
Analyst:	MLL

Sample Type:Laboratory Control Sample DuplicateMatrix:WATER

Analysis Date: 11/10/2022 13:23Dilution: 1Prep Batch ID:51321Batch ID: 51323

			Amoun		Spike	D			
CASNo		Dammara			Conc.	Recovery %	Acceptance Limits	RPD %	Acceptance Limits
CAS No.		Parmname	pg/L		pg/L	%	Limits	70	Linits
2051-60-7	LCSD	1-MoCB	500		443	88.5	50-150	10.2	0-20
2051-62-9	LCSD	3-MoCB	500		480	96	50-150	3.66	0-20
13029-08-8	LCSD	4-DiCB	500		425	85	50-150	8.22	0-20
2050-68-2	LCSD	15-DiCB	500		471	94.3	50-150	8.51	0-20
38444-73-4	LCSD	19-TrCB	500		473	94.5	50-150	8.26	0-20
38444-90-5	LCSD	37-TrCB	500		456	91.2	50-150	5.67	0-20
15968-05-5	LCSD	54-TeCB	1000		988	98.8	50-150	3.41	0-20
32598-13-3	LCSD	77-TeCB	1000		901	90.1	50-150	8.10	0-20
70362-50-4	LCSD	81-TeCB	1000		769	76.9	50-150	7.23	0-20
56558-16-8	LCSD	104-PeCB	1000		953	95.3	50-150	5.83	0-20
32598-14-4	LCSD	105-PeCB	1000		847	84.7	50-150	8.71	0-20
74472-37-0	LCSD	114-PeCB	1000		985	98.5	50-150	5.75	0-20
31508-00-6	LCSD	118-PeCB	1000		1010	101	50-150	9.72	0-20
65510-44-3	LCSD	123-PeCB	1000		818	81.8	50-150	12.3	0-20
57465-28-8	LCSD	126-PeCB	1000		947	94.7	50-150	4.74	0-20
33979-03-2	LCSD	155-HxCB	1000		941	94.1	50-150	6.09	0-20
38380-08-4	LCSD	156-HxCB	2000	С	1830	91.4	50-150	7.91	0-20
69782-90-7	LCSD	157-HxCB		C156					
52663-72-6	LCSD	167-HxCB	1000		933	93.3	50-150	7.24	0-20
32774-16-6	LCSD	169-HxCB	1000		907	90.7	50-150	6.37	0-20
74487-85-7	LCSD	188-HpCB	1000		909	90.9	50-150	9.26	0-20
39635-31-9	LCSD	189-HpCB	1000		895	89.5	50-150	12.1	0-20
2136-99-4	LCSD	202-OcCB	1500		1510	100	50-150	7.05	0-20
74472-53-0	LCSD	205-OcCB	1500		1340	89.4	50-150	7.52	0-20
40186-72-9	LCSD	206-NoCB	1500		1420	94.8	50-150	4.66	0-20
52663-77-1	LCSD	208-NoCB	1500		1530	102	50-150	4.20	0-20
2051-24-3	LCSD	209-DeCB	1500		1330	88.7	50-150	7.30	0-20

Report Date: November 23, 2022

Method Blank Summary

Page 1	of	1
--------	----	---

SDG Number:	2210315	Client:	HALL001	Matrix:	WATER
Client ID:	MB for batch 51321	Instrument ID:	HRP875	Data File:	d08nov22a_5-3
Lab Sample ID:	12033076	Prep Date:	02-NOV-22	Analyzed:	11/10/22 14:33
Column:		-			

This method blank applies to the following samples and quality control samples:

Client Sample ID	Lab Sample ID	File ID	Date Analyzed	Time Analyzed
01 LCS for batch 51321	12033077	d08nov22a_5-1	11/10/22	1214
02 LCSD for batch 51321	12033078	d08nov22a_5-2	11/10/22	1323
03 2210315-001J R6 North-20221005	20534001	d08nov22a_7-9	11/11/22	2111
04 2210315-002J R6 South-20221006	20534002	d08nov22a_7-10	11/11/22	2221

		Certifie	B Congeners cate of Analysis ple Summary			Page 1	of 8
SDG Number: Lab Sample ID: Client Sample:	2210315 12033076 QC for batch 51321	Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date: Data File:	MB for batch 51321 51323 11/10/2022 14:33 d08nov22a 5-3	Method: Analyst:	EPA Method 1668A MLL		Prep Basis: Instrument: Dilution:	As Received HRP875 1	
Prep Batch: Prep Date:	51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
2051-60-7 1-N	AoCB	U	ND	pg/L	4.24	100	
2051-61-8 2-N	<i>l</i> oCB	U	ND	pg/L	4.84	100	
2051-62-9 3-N	ИоCB	U	ND	pg/L	3.80	100	
13029-08-8 4-1	DiCB	U	ND	pg/L	11.4	100	
16605-91-7 5-1	DiCB	U	ND	pg/L	9.04	100	
25569-80-6 6-1	DiCB	U	ND	pg/L	7.52	100	
33284-50-3 7-1	DiCB	U	ND	pg/L	7.66	100	
34883-43-7 8-1	DiCB	U	ND	pg/L	6.54	100	
34883-39-1 9-1	DiCB	U	ND	pg/L	8.86	100	
33146-45-1 10-	DiCB	U	ND	pg/L	6.40	100	
2050-67-1 11-	DiCB	U	ND	pg/L	58.1	100	
2974-92-7 12-	DiCB	CU	ND	pg/L	7.68	200	
2974-90-5 13-	DiCB	C12					
34883-41-5 14-	DiCB	U	ND	pg/L	7.86	100	
2050-68-2 15-	DiCB	U	ND	pg/L	6.96	100	
38444-78-9 16-	·TrCB	U	ND	pg/L	5.24	100	
37680-66-3 17-	TrCB	U	ND	pg/L	5.26	100	
37680-65-2 18-	TrCB	CU	ND	pg/L	4.46	200	
38444-73-4 19-	TrCB	U	ND	pg/L	5.52	100	
38444-84-7 20-	TrCB	CJ	5.80	pg/L	3.66	200	
55702-46-0 21-	TrCB	CU	ND	pg/L	3.52	200	
38444-85-8 22-	TrCB	U	ND	pg/L	3.82	100	
55720-44-0 23-	TrCB	U	ND	pg/L	3.82	100	
55702-45-9 24-	TrCB	U	ND	pg/L	4.22	100	
55712-37-3 25-	TrCB	U	ND	pg/L	3.36	100	
38444-81-4 26-	TrCB	CU	ND	pg/L	3.82	200	
38444-76-7 27-	TrCB	U	ND	pg/L	4.04	100	
7012-37-5 28-	TrCB	C20					
15862-07-4 29-	TrCB	C26					
35693-92-6 30-	TrCB	C18					
16606-02-3 31-	TrCB	U	ND	pg/L	3.52	100	
38444-77-8 32-	TrCB	U	ND	pg/L	3.68	100	

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certifi	3 Congeners cate of Analysis ple Summary			Page 2	of 8
SDG Number: Lab Sample ID Client Sample:		Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date: Data File:	MB for batch 51321 51323 11/10/2022 14:33 d08nov22a_5-3	Method: Analyst:	EPA Method 1668A MLL		Prep Basis: Instrument: Dilution:	As Received HRP875 1	
Prep Batch: Prep Date:	51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Prep SOP Ref:		
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
38444-86-9 33	3-TrCB	C21					
37680-68-5 34	4-TrCB	U	ND	pg/L	4.14	100	
37680-69-6 35	5-TrCB	U	ND	pg/L	5.24	100	
38444-87-0 36	6-TrCB	U	ND	pg/L	4.62	100	
38444-90-5 37	7-TrCB	U	ND	pg/L	4.66	100	
53555-66-1 38	8-TrCB	U	ND	pg/L	5.26	100	
38444-88-1 39	9-TrCB	U	ND	pg/L	5.12	100	
38444-93-8 40	0-TeCB	CU	ND	pg/L	4.88	200	
52663-59-9 41	1-TeCB	U	ND	pg/L	6.64	100	
36559-22-5 42	2-TeCB	U	ND	pg/L	5.40	100	
70362-46-8 43	3-TeCB	U	ND	pg/L	6.46	100	
41464-39-5 44	4-TeCB	CU	ND	pg/L	6.04	300	
70362-45-7 45	5-TeCB	CU	ND	pg/L	3.42	200	
41464-47-5 46	6-TeCB	U	ND	pg/L	3.54	100	
2437-79-8 47	7-TeCB	C44					
70362-47-9 48	8-TeCB	U	ND	pg/L	5.38	100	
41464-40-8 49	9-TeCB	CU	ND	pg/L	4.44	200	
62796-65-0 50	0-TeCB	CU	ND	pg/L	3.34	200	
68194-04-7 51	1-TeCB	C45					
35693-99-3 52	2-TeCB	J	8.28	pg/L	5.84	200	
	3-TeCB	C50					
	4-TeCB	U	ND	pg/L	2.26	100	
74338-24-2 55	5-TeCB	U	ND	pg/L	4.76	100	
	6-TeCB	U	ND	pg/L	4.80	100	
	7-TeCB	U	ND	pg/L	4.56	100	
	8-TeCB	U	ND	pg/L	4.72	100	
	9-TeCB	CU	ND	pg/L	4.12	300	
	0-TeCB	U	ND	pg/L	4.66	100	
	1-TeCB	CJ	7.58	pg/L	4.50	400	
	2-TeCB	C59					
	3-TeCB	U	ND	pg/L	4.44	100	
52663-58-8 64	4-TeCB	U	ND	pg/L	3.86	100	

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certifi	3 Congeners cate of Analysis ple Summary			Page 3	of 8
SDG Number Lab Sample I Client Sample	D: 12033076	Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID:	MB for batch 51321 51323	Method:	EPA Method 1668A		Prep Basis:	As Received	
Run Date:	11/10/2022 14:33	Analyst:	MLL		Instrument: Dilution:	HRP875 1	
Data File: Prep Batch: Prep Date:	d08nov22a_5-3 51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Prep SOP Ref:		
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
33284-54-7	65-TeCB	C44					
32598-10-0	66-TeCB	U	ND	pg/L	4.66	100	
73575-53-8	67-TeCB	U	ND	pg/L	3.66	100	
73575-52-7	68-TeCB	U	ND	pg/L	4.02	100	
60233-24-1	69-TeCB	C49					
32598-11-1	70-TeCB	C61					
41464-46-4	71-TeCB	C40					
41464-42-0	72-TeCB	U	ND	pg/L	4.34	100	
74338-23-1	73-TeCB	U	ND	pg/L	3.84	100	
32690-93-0	74-TeCB	C61					
32598-12-2	75-TeCB	C59					
70362-48-0	76-TeCB	C61		1	1.54	100	
32598-13-3	77-TeCB	U	ND	pg/L	4.76	100	
70362-49-1	78-TeCB	U U	ND	pg/L	5.30	100	
41464-48-6 33284-52-5	79-TeCB 80-TeCB	U	ND ND	pg/L	4.20 4.04	100 100	
70362-50-4	81-TeCB	U	ND	pg/L pg/L	4.04	100	
52663-62-4	82-PeCB	U	ND	pg/L pg/L	6.86	100	
60145-20-2	83-PeCB	U	ND	pg/L pg/L	7.94	100	
52663-60-2	84-PeCB	U	ND	pg/L pg/L	5.86	100	
65510-45-4	85-PeCB	CU	ND	pg/L	4.86	300	
55312-69-1	86-PeCB	CJ	6.84	pg/L	4.90	600	
38380-02-8	87-PeCB	C86		18			
55215-17-3	88-PeCB	CU	ND	pg/L	5.84	200	
73575-57-2	89-PeCB	U	ND	pg/L	6.96	100	
68194-07-0	90-PeCB	CU	ND	pg/L	7.70	300	
68194-05-8	91-PeCB	C88					
52663-61-3	92-PeCB	U	ND	pg/L	6.42	100	
73575-56-1	93-PeCB	CU	ND	pg/L	5.26	200	
73575-55-0	94-PeCB	U	ND	pg/L	5.60	100	
38379-99-6	95-PeCB	U	ND	pg/L	6.24	100	
73575-54-9	96-PeCB	U	ND	pg/L	3.24	100	

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certifi	3 Congeners cate of Analysis ple Summary			Page 4	of 8
SDG Number: Lab Sample ID: Client Sample:	2210315 : 12033076 QC for batch 51321	Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID:	MB for batch 51321				Prep Basis:	As Received	
Batch ID: Run Date: Data File:	51323 11/10/2022 14:33 d08nov22a_5-3	Method: Analyst:	EPA Method 1668A MLL		Instrument: Dilution:	HRP875 1	
Prep Batch: Prep Date:	51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
41464-51-1 97	7-PeCB	C86					
60233-25-2 98	3-PeCB	CU	ND	pg/L	5.32	200	
38380-01-7 99)-PeCB	U	ND	pg/L	5.34	100	
39485-83-1 10	00-PeCB	C93					
)1-PeCB	C90					
68194-06-9 10)2-PeCB	C98					
)3-PeCB	U	ND	pg/L	5.42	100	
)4-PeCB	U	ND	pg/L	2.42	100	
)5-PeCB	U	ND	pg/L	4.16	100	
)6-PeCB	U	ND	pg/L	4.48	100	
)7-PeCB	U	ND	pg/L	3.60	100	
)8-PeCB	CU	ND	pg/L	4.32	200	
)9-PeCB	C86					
	l0-PeCB	CU	ND	pg/L	6.76	200	
	11-PeCB	U	ND	pg/L	4.16	100	
	2-PeCB	U	ND	pg/L	3.94	100	
	I3-PeCB	C90				100	
	4-PeCB	U	ND	pg/L	3.92	100	
	15-PeCB	C110					
	6-PeCB	C85					
	7-PeCB	C85	5 50		4.02	100	
	8-PeCB 19-PeCB	J C86	5.50	pg/L	4.02	100	
			ND	ne/I	1 29	100	
	20-PeCB	U U	ND	pg/L	4.38	100 100	
	21-PeCB 22-PeCB	U	ND ND	pg/L pg/L	4.12 5.68	100	
	22-PeCB 23-PeCB	U	ND	pg/L pg/L	3.70	100	
	24-PeCB	C108		hR\r	5.70	100	
	25-PeCB	C86					
	26-PeCB	U	ND	pg/L	4.76	100	
	27-PeCB	U	ND	pg/L pg/L	4.70	100	
	28-HxCB	CU	ND	pg/L pg/L	5.02	200	
50500-07-5 12	LU-IIACD	CU	nD.	PR/L	5.02	200	

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certifi	3 Congeners cate of Analysis ple Summary			Page 5	of 8
SDG Number: Lab Sample II Client Sample	D: 12033076	Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date:	MB for batch 51321 51323 11/10/2022 14:33	Method: Analyst:	EPA Method 1668A MLL		Prep Basis: Instrument: Dilution:	As Received HRP875 1	
Data File: Prep Batch: Prep Date:	d08nov22a_5-3 51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Prep SOP Ref:		
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
55215-18-4	129-HxCB	CU	ND	pg/L	6.82	300	
52663-66-8	130-HxCB	U	ND	pg/L	6.36	100	
61798-70-7	131-HxCB	U	ND	pg/L	6.48	100	
38380-05-1	132-HxCB	U	ND	pg/L	5.90	100	
35694-04-3	133-HxCB	U	ND	pg/L	6.18	100	
52704-70-8	134-HxCB	U	ND	pg/L	6.48	100	
52744-13-5	135-HxCB	CU	ND	pg/L	4.58	200	
38411-22-2	136-HxCB	U	ND	pg/L	3.48	100	
35694-06-5	137-HxCB	U	ND	pg/L	5.58	100	
35065-28-2	138-HxCB	C129					
56030-56-9	139-HxCB	CU	ND	pg/L	5.20	200	
59291-64-4	140-HxCB	C139					
52712-04-6	141-HxCB	U	ND	pg/L	5.24	100	
41411-61-4	142-HxCB	U	ND	pg/L	6.30	100	
68194-15-0	143-HxCB	U	ND	pg/L	5.98	100	
68194-14-9	144-HxCB	U	ND	pg/L	4.50	100	
74472-40-5	145-HxCB	U	ND	pg/L	3.30	100	
51908-16-8	146-HxCB	U	ND	pg/L	5.00	100	
68194-13-8	147-HxCB	CU	ND	pg/L	5.08	200	
	148-HxCB	U	ND	pg/L	4.38	100	
	149-HxCB	C147					
68194-08-1	150-HxCB	U	ND	pg/L	3.16	100	
	151-HxCB	C135					
	152-HxCB	U	ND	pg/L	3.38	100	
	153-HxCB	CJ	4.94	pg/L	4.58	200	
	154-HxCB	U	ND	pg/L	3.64	100	
	155-HxCB	U	ND	pg/L	2.48	100	
	156-HxCB	CU	ND	pg/L	4.10	200	
	157-HxCB	C156					
	158-HxCB	U	ND	pg/L	3.68	100	
	159-HxCB	U	ND	pg/L	3.54	100	
41411-62-5	160-HxCB	U	ND	pg/L	4.46	100	

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certifie	B Congeners cate of Analysis ple Summary			Page 6	of 8
SDG Number: Lab Sample ID: Client Sample:	2210315 12033076 QC for batch 51321	Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID:	MB for batch 51321 51323	Method:	EPA Method 1668A		Prep Basis:	As Received	
Run Date: Data File: Prep Batch:	11/10/2022 14:33 d08nov22a_5-3 51321	Analyst: Prep Method:	MLL SW846 3520C		Instrument: Dilution: Prep SOP Ref:	HRP875 1 CF-OA-E-001	
Prep Date:	02-NOV-22	Prep Aliquot:	1000 mL				
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
74472-43-8 161	1-HxCB	U	ND	pg/L	4.34	100	
	2-HxCB	U	ND	pg/L	3.46	100	
	3-HxCB	C129					
	4-HxCB	U	ND	pg/L	4.12	100	
	5-HxCB	U	ND	pg/L	4.58	100	
41411-63-6 166	5-HxCB	C128					
52663-72-6 167	7-HxCB	U	ND	pg/L	3.06	100	
	8-HxCB	C153					
	9-HxCB	U	ND	pg/L	3.52	100	
)-НрСВ	U	ND	pg/L	4.72	100	
	1-НрСВ	CU	ND	pg/L	4.98	200	
	2-НрСВ	U	ND	pg/L	4.90	100	
	3-НрСВ	C171					
	4-HpCB	U	ND	pg/L	4.64	100	
	5-HpCB	U	ND	pg/L	4.20	100	
	6-HpCB	U	ND	pg/L	3.24	100	
	7-HpCB	U	ND	pg/L	5.02	100	
	8-HpCB	U	ND	pg/L	4.46	100	
	9-HpCB	U CU	ND	pg/L	3.16	100	
)-HpCB		ND	pg/L	3.88	200	
	I-HpCB	U U	ND ND	pg/L	4.80 4.04	100 100	
	2-HpCB 3-HpCB	CU	ND	pg/L pg/L	4.04	200	
	4-HpCB	U	ND	pg/L pg/L	3.10	100	
	прСВ 5-НрСВ	C183		hR\r	5.10	100	
	5-HpCB	U	ND	pg/L	3.22	100	
	7-HpCB	U	ND	pg/L pg/L	4.08	100	
	8-НрСВ	U	ND	pg/L pg/L	2.70	100	
	Э-НрСВ	U	ND	pg/L pg/L	4.02	100	
)-HpCB	U	ND	pg/L pg/L	3.48	100	
	I-HpCB	U	ND	pg/L pg/L	3.44	100	
	2-HpCB	U	ND	pg/L pg/L	4.00	100	

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		PCF	B Congeners			Page 7	of 8
		Certifie	cate of Analysis ple Summary				
SDG Number Lab Sample I Client Sample	D: 12033076	Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date:	MB for batch 51321 51323 11/10/2022 14:33	Method: Analyst:	EPA Method 1668A MLL		Prep Basis: Instrument:	As Received HRP875	
Data File: Prep Batch: Prep Date:	d08nov22a_5-3 51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
69782-91-8	193-НрСВ	C180					
35694-08-7	194-OcCB	U	ND	pg/L	3.80	100	
2663-78-2	195-OcCB	U	ND	pg/L	4.02	100	
2740-50-1	196-OcCB	U	ND	pg/L	3.70	100	
3091-17-7	197-OcCB	CU	ND	pg/L	2.94	200	
8194-17-2	198-OcCB	CU	ND	pg/L	3.84	200	
2663-75-9	199-OcCB	C198					
2663-73-7	200-ОсСВ	C197					
0186-71-8	201-OcCB	U	ND	pg/L	2.74	100	
136-99-4	202-OcCB	U	ND	pg/L	2.74	100	
2663-76-0	203-ОсСВ	U	ND	pg/L	3.66	100	
4472-52-9	204-OcCB	U	ND	pg/L	2.82	100	
74472-53-0	205-ОсСВ	U	ND	pg/L	3.00	100	
0186-72-9	206-NoCB	U	ND	pg/L	5.48	100	
2663-79-3	207-NoCB	U	ND	pg/L	4.04	100	
2663-77-1	208-NoCB	U	ND	pg/L	3.76	100	
2051-24-3	209-DeCB	U	ND	pg/L	4.54	100	
336-36-3	Total PCB Congeners	J	38.9	pg/L		100	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1-MoCB		666	2000	pg/L	33.3	(15%-150%)
13C-3-MoCB		760	2000	pg/L	38.0	(15%-150%)
13C-4-DiCB		761	2000	pg/L	38.1	(25%-150%)
13C-15-DiCB		1010	2000	pg/L	50.4	(25%-150%)
13C-19-TrCB		915	2000	pg/L	45.8	(25%-150%)
13C-37-TrCB		963	2000	pg/L	48.2	(25%-150%)
13C-54-TeCB		872	2000	pg/L	43.6	(25%-150%)
13C-77-TeCB		1120	2000	pg/L	56.2	(25%-150%)
13C-81-TeCB		1200	2000	pg/L	60.0	(25%-150%)
13C-104-PeCB		932	2000	pg/L	46.6	(25%-150%)
13C-105-PeCB		971	2000	pg/L	48.6	(25%-150%)
13C-114-PeCB		964	2000	pg/L	48.2	(25%-150%)
13C-118-PeCB		882	2000	pg/L	44.1	(25%-150%)
13C-123-PeCB		1010	2000	pg/L	50.5	(25%-150%)
13C-126-PeCB		1010	2000	pg/L	50.6	(25%-150%)
13C-155-HxCB		996	2000	pg/L	49.8	(25%-150%)
13C-156-HxCB	С	2250	4000	pg/L	56.2	(25%-150%)
13C-157-HxCB	C156L					
13C-167-HxCB		1110	2000	pg/L	55.7	(25%-150%)
3С-169-НхСВ		1140	2000	pg/L	57.1	(25%-150%)
3С-188-НрСВ		989	2000	pg/L	49.5	(25%-150%)
3С-189-НрСВ		1030	2000	pg/L	51.5	(25%-150%)

		Certifie	Congeners cate of Analysis ple Summary			Page 8 of 8	
SDG Number:	2210315	Client:	HALL001		Project:	HALL00113	
Lab Sample ID:	12033076				Matrix:	WATER	
Client Sample:	QC for batch 51321						
Client ID:	MB for batch 51321				Prep Basis:	As Received	
Batch ID:	51323	Method:	EPA Method 1668A				
Run Date:	11/10/2022 14:33	Analyst:	MLL		Instrument:	HRP875	
Data File:	d08nov22a 5-3				Dilution:	1	
Prep Batch:	51321	Prep Method:	SW846 3520C		Prep SOP Ref:	CF-OA-E-001	
Prep Date:	02-NOV-22	Prep Aliquot:	1000 mL				
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-202-OcCB		1040	2000	pg/L	51.8	(25%-150%)
3C-205-OcCB		1170	2000	pg/L	58.6	(25%-150%)
3C-206-NoCB		1150	2000	pg/L	57.5	(25%-150%)
3C-208-NoCB		1030	2000	pg/L	51.4	(25%-150%)
3C-209-DeCB		1150	2000	pg/L	57.7	(25%-150%)
3C-28-TrCB		1040	2000	pg/L	51.9	(30%-135%)
3C-111-PeCB		1100	2000	pg/L	55.2	(30%-135%)
3С-178-НрСВ		1240	2000	pg/L	62.0	(30%-135%)

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		PCI	B Congeners			Page 1	of 2
			cate of Analysis				
			ple Summary				
SDG Numbe Lab Sample Client Sampl	ID: 12033077	Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID:	LCS for batch 51321 51323	Method:	EPA Method 1668A		Prep Basis:	As Received	
Run Date:	11/10/2022 12:14	Analyst:	MLL		Instrument:	HRP875	
Data File: Prep Batch: Prep Date:	d08nov22a_5-1 51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
2051-60-7	1-MoCB		490	pg/L	5.90	100	
2051-62-9	3-MoCB		498	pg/L	5.40	100	
13029-08-8	4-DiCB		462	pg/L	9.84	100	
2050-68-2	15-DiCB		513	pg/L	8.46	100	
38444-73-4	19-TrCB		513	pg/L	7.04	100	
38444-90-5	37-TrCB		483	pg/L	12.0	100	
15968-05-5	54-TeCB		1020	pg/L	3.78	100	
32598-13-3	77-TeCB		977	pg/L	16.2	100	
70362-50-4	81-TeCB		826	pg/L	15.1	100	
56558-16-8	104-PeCB		1010	pg/L	2.54	100	
32598-14-4	105-PeCB		924	pg/L	19.9	100	
74472-37-0	114-PeCB		1040	pg/L	18.6	100	
31508-00-6	118-PeCB		1110	pg/L	18.9	100	
65510-44-3	123-PeCB		926	pg/L	17.8	100	
57465-28-8	126-PeCB		993	pg/L	20.4	100	
33979-03-2	155-HxCB		1000	pg/L	2.64	100	
38380-08-4	156-HxCB	С	1980	pg/L	17.4	200	
69782-90-7	157-HxCB	C156					
52663-72-6	167-HxCB		1000	pg/L	12.8	100	
32774-16-6	169-HxCB		967	pg/L	14.7	100	
74487-85-7	188-HpCB		997	pg/L	3.20	100	
39635-31-9	189-НрСВ		1010	pg/L	8.64	100	
2136-99-4	202-OcCB		1620	pg/L	22.6	100	
74472-53-0	205-OcCB		1450	pg/L	9.54	100	
40186-72-9	206-NoCB		1490	pg/L	7.36	100	
52663-77-1	208-NoCB		1590	pg/L	5.44	100	
2051-24-3	209-DeCB		1430	pg/L	4.50	100	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1-MoCB		757	2000	pg/L	37.9	(15%-140%)
13C-3-MoCB		876	2000	pg/L	43.8	(15%-140%)
13C-4-DiCB		865	2000	pg/L	43.3	(30%-140%)
13C-15-DiCB		1300	2000	pg/L	65.1	(30%-140%)
13C-19-TrCB		1070	2000	pg/L	53.6	(30%-140%)
13C-37-TrCB		1220	2000	pg/L	61.0	(30%-140%)
13C-54-TeCB		1030	2000	pg/L	51.6	(30%-140%)
13C-77-TeCB		1290	2000	pg/L	64.6	(30%-140%)
13C-81-TeCB		1340	2000	pg/L	66.8	(30%-140%)
13C-104-PeCB		1200	2000	pg/L	60.0	(30%-140%)
13C-105-PeCB		1150	2000	pg/L	57.4	(30%-140%)
13C-114-PeCB		1140	2000	pg/L	56.9	(30%-140%)
13C-118-PeCB		1010	2000	pg/L	50.5	(30%-140%)

			Certific	Congener cate of Ana ple Summa	alysis			Page 2	of 2
SDG Number: Lab Sample ID: Client Sample:	2210315 12033077 QC for batch 51321	Clier	nt:	HALL001			Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date: Data File: Prep Batch: Prep Date:	LCS for batch 51321 51323 11/10/2022 12:14 d08nov22a_5-1 51321 02-NOV-22	1		EPA Meth MLL SW846 35 1000 mL		A]]	Prep Basis: Instrument: Dilution: Prep SOP Ref:	As Received HRP875 1 CF-OA-E-001	
CAS No.	Parmname		Qual	Result		Units	EDL	PQL	
Surrogate/Trace	r recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable	e Limits	
13C-123-PeCB			1160	2000	pg/L	58.0	(30%-14	40%)	
13C-126-PeCB			1310	2000	pg/L	65.6	(30%-14	40%)	
13C-155-HxCB			1150	2000	pg/L	57.6	(30%-14	40%)	
13C-156-HxCB		С	2610	4000	pg/L	65.3	(30%-14	40%)	

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

pg/L

65.4

67.8

56.5

58.4

61.1

70.3

69.1

57.7

68.4

61.0

64.1

73.2

(30%-140%)

(30%-140%)

(30%-140%)

(30%-140%)

(30%-140%)

(30%-140%)

(30%-140%)

(30%-140%)

(30%-140%)

(40%-125%)

(40%-125%)

(40%-125%)

13C-178-HpCB Comments:

13C-157-HxCB

13C-167-HxCB

13C-169-HxCB

13C-188-HpCB

13С-189-НрСВ

13C-202-OcCB

13C-205-OcCB

13C-206-NoCB

13C-208-NoCB

13C-209-DeCB

13C-28-TrCB

13C-111-PeCB

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

U Analyte was analyzed for, but not detected above the specified detection limit.

C156L

1310

1360

1130

1170

1220

1410

1380

1150

1370

1220

1280

1460

		РСЕ	B Congeners			Page 1 of 2	
			cate of Analysis				
		Samj	ple Summary				
SDG Number Lab Sample I Client Sample	D: 12033078	Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date:	LCSD for batch 51321 51323 11/10/2022 13:23	Method: Analyst:	EPA Method 1668A MLL		Prep Basis: Instrument:	As Received HRP875	
Data File: Prep Batch: Prep Date:	d08nov22a_5-2 51321 02-NOV-22	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
2051-60-7	1-MoCB		443	pg/L	6.46	100	
2051-62-9	3-MoCB		480	pg/L	7.18	100	
13029-08-8	4-DiCB		425	pg/L	11.5	100	
2050-68-2	15-DiCB		471	pg/L	12.7	100	
38444-73-4	19-TrCB		473	pg/L	9.06	100	
38444-90-5	37-TrCB		456	pg/L	16.4	100	
15968-05-5	54-TeCB		988	pg/L	4.04	100	
32598-13-3	77-TeCB		901	pg/L	27.0	100	
70362-50-4	81-TeCB		769	pg/L	25.2	100	
56558-16-8	104-PeCB		953	pg/L	3.18	100	
32598-14-4	105-PeCB		847	pg/L	23.4	100	
74472-37-0	114-PeCB		985	pg/L	20.8	100	
31508-00-6	118-PeCB		1010	pg/L	23.3	100	
65510-44-3	123-PeCB		818	pg/L	19.9	100	
57465-28-8	126-PeCB		947	pg/L	26.0	100	
33979-03-2	155-HxCB		941	pg/L	9.38	100	
38380-08-4	156-HxCB	С	1830	pg/L	21.8	200	
69782-90-7	157-HxCB	C156					
52663-72-6	167-HxCB		933	pg/L	16.1	100	
32774-16-6	169-HxCB		907	pg/L	18.4	100	
74487-85-7	188-НрСВ		909	pg/L	3.64	100	
39635-31-9	189-НрСВ		895	pg/L	8.12	100	
2136-99-4	202-OcCB		1510	pg/L	25.5	100	
74472-53-0	205-OcCB		1340	pg/L	7.66	100	
40186-72-9	206-NoCB		1420	pg/L	9.36	100	
52663-77-1	208-NoCB		1530	pg/L	6.86	100	
2051-24-3	209-DeCB		1330	pg/L	5.86	100	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
3C-1-MoCB		544	2000	pg/L	27.2	(15%-140%)
3C-3-MoCB		636	2000	pg/L	31.8	(15%-140%)
3C-4-DiCB		656	2000	pg/L	32.8	(30%-140%)
3C-15-DiCB		895	2000	pg/L	44.8	(30%-140%)
3C-19-TrCB		838	2000	pg/L	41.9	(30%-140%)
3C-37-TrCB		753	2000	pg/L	37.6	(30%-140%)
3C-54-TeCB		750	2000	pg/L	37.5	(30%-140%)
3C-77-TeCB		827	2000	pg/L	41.3	(30%-140%)
3C-81-TeCB		874	2000	pg/L	43.7	(30%-140%)
3C-104-PeCB		884	2000	pg/L	44.2	(30%-140%)
3C-105-PeCB		864	2000	pg/L	43.2	(30%-140%)
3C-114-PeCB		843	2000	pg/L	42.1	(30%-140%)
3C-118-PeCB		764	2000	pg/L	38.2	(30%-140%)

			Certifie	Congene cate of An ple Summa	alysis			Page 2	of 2
SDG Number: Lab Sample ID: Client Sample:	2210315 12033078 QC for batch 51321	Clie	nt:	HALL001			Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID:	LCSD for batch 51321 51323	Met	hod:	EPA Meth	od 1668A		Prep Basis:	As Received	
Run Date: Data File:	11/10/2022 13:23 d08nov22a 5-2		lyst:	MLL		-	Instrument: Dilution:	HRP875 1	
Prep Batch: Prep Date:	51321 02-NOV-22		o Method: o Aliquot:	SW846 35 1000 mL	520C		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname		Qual	Result		Units	EDL	PQL	
Surrogate/Trace	r recovery	Qual	Result	Nominal	Units	Recovery	% Acceptable	e Limits	
13C-123-PeCB			880	2000	pg/L	44.0	(30%-14	40%)	

Limits
0%)
0%)
0%)
0%)
0%)
0%)
0%)
0%)
0%)
0%)
0%)
0%)
0%)
5%)
5%)
5%)
0%) 0%) 0%) 5%) 5%)

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#: 2210315 23-Nov-22

Client:AMAFCAProject:CMC Wet FY23

,			
Sample ID: MB-70825	SampType: MBLK	TestCode: EPA Method 1664B	
Client ID: PBW	Batch ID: 70825	RunNo: 91919	
Prep Date: 10/14/2022	Analysis Date: 10/18/2022	SeqNo: 3297147 Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit	%RPD RPDLimit Qual
N-Hexane Extractable Material	ND 10.0		
Sample ID: LCS-70825	SampType: LCS	TestCode: EPA Method 1664B	
Client ID: LCSW	Batch ID: 70825	RunNo: 91919	
Prep Date: 10/14/2022	Analysis Date: 10/18/2022	SeqNo: 3297148 Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit	%RPD RPDLimit Qual
N-Hexane Extractable Material	37.8 10.0 40.00	0 94.5 78 114	
Sample ID: LCSD-70825	SampType: LCSD	TestCode: EPA Method 1664B	
Client ID: LCSS02	Batch ID: 70825	RunNo: 91919	
Prep Date: 10/14/2022	Analysis Date: 10/18/2022	SeqNo: 3297149 Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit	%RPD RPDLimit Qual
N-Hexane Extractable Material	37.4 10.0 40.00	0 93.5 78 114	1.06 20

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#: 2210315 23-Nov-22

Client: AMAFCA **Project:** CMC Wet FY23

Sample ID: ND 20044 Sampling: NDLK Top/Code: FDA Mathed 200 7: Natala								
Sample ID: MB-70811 SampType: MBLK TestCode: EPA Method 200.7: Metals								
Client ID: PBW Batch ID: 70811 RunNo: 91819								
Prep Date: 10/13/2022 Analysis Date: 10/14/2022 SeqNo: 3291906 Units: mg/L								
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD	RPDLimit Qual							
Calcium ND 1.0								
Magnesium ND 1.0								
Sample ID: LCSLL-70811 SampType: LCSLL TestCode: EPA Method 200.7: Metals	SampType: LCSLL TestCode: EPA Method 200.7: Metals							
Client ID: BatchQC Batch ID: 70811 RunNo: 91819								
Prep Date: 10/13/2022 Analysis Date: 10/14/2022 SeqNo: 3291907 Units: mg/L								
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD	RPDLimit Qual							
Calcium ND 1.0 0.5000 0 103 50 150								
Magnesium ND 1.0 0.5000 0 104 50 150								
Sample ID: LCS-70811 SampType: LCS TestCode: EPA Method 200.7: Metals	SampType: LCS TestCode: EPA Method 200.7: Metals							
Client ID: LCSW Batch ID: 70811 RunNo: 91819								
Prep Date: 10/13/2022 Analysis Date: 10/14/2022 SeqNo: 3291908 Units: mg/L								
Prep Date: 10/13/2022 Analysis Date: 10/14/2022 SeqNo: 3291908 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD	RPDLimit Qual							
	RPDLimit Qual							

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 15 of 25

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#: 2210315 23-Nov-22

Client: Project:	AMAFCA CMC Wet											
Sample ID:	МВ	B SampType: MBLK				TestCode: EPA 200.8: Dissolved Metals						
Client ID:	PBW	Batch ID: A91883			F	RunNo: 91883						
Prep Date:		Analysis Date: 10/18/2022			SeqNo: 3295065			Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Copper Lead		ND ND	0.0010 0.00050									
Sample ID:	LCSLL	Sam	oType: LC	SLL	Tes	tCode: EF	PA 200.8: D	issolved Meta	als			
Client ID:	BatchQC Batch ID: A91883			F	RunNo: 9 1	1883						
Prep Date:	Analysis Date: 10/18/2022			S	SeqNo: 32	295066	Units: mg/L					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Copper		0.0010	0.0010	0.001000	0	101	50	150				
Lead		0.00052	0.00050	0.0005000	0	105	50	150				
Sample ID:	LCS	Sam	oType: LC	S	Tes	tCode: EF	PA 200.8: D	issolved Meta	als			
Client ID:	LCSW	Bat	ch ID: A9	1883	F	RunNo: 91883						
Prep Date:	Analysis Date: 10/18/2022			SeqNo: 3295067 Units: mg/L								
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Copper		0.025	0.0010	0.02500	0	98.9	85	115				
Lead		0.012	0.00050	0.01250	0	97.4	85	115				
Sample ID:	2210315-002NMSL	L Sam	oType: MS	8	Tes	tCode: EF	PA 200.8: D	issolved Meta	als			
Client ID:	R6 South-20221000	RunNo: 91883										
Prep Date:		Analysis	Date: 10	0/18/2022	5	SeqNo: 32	295096	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Copper		0.026	0.0010		0.0007151	102	70	130				
Lead		0.013	0.00050	0.01250).00007696	107	70	130				
Sample ID:	2210315-002NMSD	L Sam	oType: MS	SD	Tes	tCode: EF	PA 200.8: D	issolved Meta	als			
Client ID:	R6 South-20221000	6 Bat	ch ID: A9	1883	RunNo: 91883							
Prep Date:		Analysis	Date: 10)/18/2022	S	SeqNo: 32	295097	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Copper		0.026	0.0010		0.0007151	101	70	130	0.371	20		
Lead		0.013	0.00050	0.01250).00007696	105	70	130	1.82	20		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 25

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

AMAFCA

Client:

WO#: 2210315 23-Nov-22

Project:	CMC Wet FY23									
Sample ID: MB Client ID: PBW	Bate	SampType: MBLK Batch ID: A91618 Analysis Date: 10/6/2022			TestCode: EPA Method 300.0: Anions RunNo: 91618					
Prep Date: Analyte Nitrogen, Nitrite (As N) Nitrogen, Nitrate (As N)	Result ND ND			SPK Ref Val	eqNo: 32	LowLimit	Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Sample ID: LCS Client ID: LCSW Prep Date:	Client ID: LCSW Batch ID: A91618				TestCode: EPA Method 300.0: Anions RunNo: 91618 SeqNo: 3282486 Units: mg/L					
Analyte Nitrogen, Nitrite (As N) Nitrogen, Nitrate (As N)	Result 0.94 2.5	PQL S 0.10 0.10	PK value 1.000 2.500	SPK Ref Val 0 0	%REC 93.8 98.8	LowLimit 90 90	HighLimit 110 110	%RPD	RPDLimit	Qual
Sample ID: 2210315-001EMS SampType: MS Client ID: R6 North-20221005 Batch ID: A91618 Prep Date: Analysis Date: 10/7/2022				TestCode: EPA Method 300.0: Anions RunNo: 91618 SeqNo: 3282497 Units: mg/L						
Analyte Nitrogen, Nitrite (As N) Nitrogen, Nitrate (As N)	Result 4.7 13	PQL S 0.50 0.50	PK value 5.000 12.50	SPK Ref Val 0 0.1075	%REC 94.4 99.8	LowLimit 83.4 89.5	HighLimit 110 113	%RPD	RPDLimit	Qual
Sample ID: 221031 Client ID: R6 Nor Prep Date:	: h-20221005 Bate				TestCode: EPA Method 300.0: Anions RunNo: 91618 SeqNo: 3282498 Units: mg/L					
Analyte	Result	PQL S	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

0

0.1075

93.8

98.8

83.4

89.5

110

113

0.691

0.995

Qualifiers:

Nitrogen, Nitrite (As N)

Nitrogen, Nitrate (As N)

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.

4.7

12

0.50

0.50

5.000

12.50

- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 25

20

20

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#: 2210315 23-Nov-22

Client:AMAEProject:CMC	FCA Wet FY23									
Sample ID: MB-70767	SampType:	MBLK	Tes	TestCode: EPA Method 8081: PESTICIDES						
Client ID: PBW	Batch ID:	70767	F	RunNo: 91851						
Prep Date: 10/12/2022	Analysis Date:	10/17/2022	5	SeqNo: 329	4644	Units: µg/L				
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Dieldrin		0.10								
Surr: Decachlorobiphenyl	2.5	2.500		101	40.9	111				
Surr: Tetrachloro-m-xylene	2.0	2.500		79.4	15	107				
Sample ID: MB-70767	SampType:	MBLK	Tes	tCode: EPA	Method	8081: PESTIC	CIDES			
Client ID: PBW	Batch ID:	70767	F	RunNo: 918	51					
Prep Date: 10/12/2022	Analysis Date:	10/17/2022	S	SeqNo: 329	4646	Units: µg/L				
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Dieldrin	ND 0	0.10								
Surr: Decachlorobiphenyl	2.5	2.500		102	40.9	111				
Surr: Tetrachloro-m-xylene	2.0	2.500		80.9	15	107				
Sample ID: LCS-70767	SampType:	LCS	Tes	tCode: EPA	Method	8081: PESTIC	CIDES			
Client ID: LCSW	Batch ID:	70767	F	RunNo: 918	51					
Prep Date: 10/12/2022	Analysis Date:	10/17/2022	5	SeqNo: 329	4647	Units: µg/L				
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Dieldrin	0.43 0	0.10 0.5000	0	86.2	56.3	121				
Surr: Decachlorobiphenyl	2.4	2.500		95.2	40.9	111				
Surr: Tetrachloro-m-xylene	2.0	2.500		78.6	15	107				
Sample ID: LCS-70767	SampType:	LCS	Tes	tCode: EPA	Method	8081: PESTIC	CIDES			
Client ID: LCSW	Batch ID:	70767	F	RunNo: 918	51					
Prep Date: 10/12/2022	Analysis Date:	10/17/2022	5	SeqNo: 329	4648	Units: µg/L				
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Dieldrin	0.44 0	0.10 0.5000	0	87.9	56.3	121				
Surr: Decachlorobiphenyl	2.4	2.500		95.7	40.9	111				
Surr: Tetrachloro-m-xylene	2.0	2.500		79.7	15	107				
Sample ID: LCSD-70767	SampType:	LCSD	Tes	tCode: EPA	Method	8081: PESTIC	CIDES			
Client ID: LCSS02	Batch ID:	70767	F	RunNo: 918	51					
Prep Date: 10/12/2022	Analysis Date:	10/17/2022	5	GeqNo: 329	4649	Units: µg/L				
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Dieldrin	0.42 0	0.10 0.5000	0	84.6	56.3	121	1.91	20		
Surr: Decachlorobiphenyl	2.3	2.500		90.9	40.9	111	0	20		
Surr: Tetrachloro-m-xylene	1.8	2.500		73.5	15	107	0	20		

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 18 of 25

LIIII

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

AMAFCA **Client: Project:**

CMC Wet FY23

Sample ID: LCSD-70767	SampType: LCSD			Tes	TestCode: EPA Method 8081: PESTICIDES					
Client ID: LCSS02	Batch ID: 70767			F	RunNo: 9 [,]	1851				
Prep Date: 10/12/2022	Analysis [Date: 10	/17/2022	SeqNo: 3294650		Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dieldrin	0.43	0.10	0.5000	0	86.1	56.3	121	2.00	20	
Surr: Decachlorobiphenyl	2.3		2.500		91.5	40.9	111	0	20	
Surr: Tetrachloro-m-xylene	1.8		2.500		73.9	15	107	0	20	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 19 of 25

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

Client:	AMAFCA										
Project:	CMC V	Wet FY23									
Sample ID:	MB-70671	Tes	tCode: SI	/I 9223B Fe	cal Indicator:	E. coli M	PN				
Client ID:	PBW	BW Batch ID: 70671			RunNo: 91638						
Prep Date:	10/6/2022	Analysis [Date: 10)/7/2022	S	SeqNo: 32	283469	Units: MPN	100mL		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
E. Coli		<1	1.000								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 25

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

AMAFCA

Client:

Project:	CMC Wet FY23	
Sample ID: MB	SampType: MBLK TestCode: SM 4500 NH3: Ammonia	
Client ID: PBW	Batch ID: R91993 RunNo: 91993	
Prep Date:	Analysis Date: 10/21/2022 SeqNo: 3300449 Units: mg/L	
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qu	ual
Nitrogen, Ammonia	ND 1.0	
Sample ID: LCS	SampType: LCS TestCode: SM 4500 NH3: Ammonia	
Client ID: LCSW	M Batch ID: R91993 RunNo: 91993	
Prep Date:	Analysis Date: 10/21/2022 SeqNo: 3300450 Units: mg/L	
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qu	ual
Nitrogen, Ammonia	9.8 1.0 10.00 0 98.0 80 120	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 25

E Abo

Client: AMAFCA Project: CMC Wet FY23

Sample ID: MB-71023	SampType: MBLK	TestCode: EPA Method 365.1: Total Phosphorous						
Client ID: PBW	Batch ID: 71023	RunNo: 92060						
Prep Date: 10/24/2022	Analysis Date: 10/25/2022	SeqNo: 3303642	Units: mg/L					
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual					
Phosphorus, Total (As P)	ND 0.050							
Sample ID: LCS-71023	0							
Sample ID. LC3-/ 1023	SampType: LCS	lestCode: EPA Method	365.1: Total Phosphorous					
Client ID: LCSW	Batch ID: 71023	TestCode: EPA Method RunNo: 92060	365.1: Total Phosphorous					
			365.1: Total Phosphorous Units: mg/L					
Client ID: LCSW	Batch ID: 71023	RunNo: 92060 SeqNo: 3303643	Units: mg/L					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 22 of 25

AMAFCA **Client: Project:** CMC Wet FY23

-								
Sample ID: MB-70696	SampType: MBLK	TestCode: SM2540C MOD: Total Dissolved Solids						
Client ID: PBW	Batch ID: 70696	RunNo: 91714						
Prep Date: 10/10/2022	Analysis Date: 10/12/2022	SeqNo: 3286928 Units: mg/L						
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qua						
Total Dissolved Solids	ND 20.0							
Sample ID: LCS-70696	SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids							
Client ID: LCSW	Batch ID: 70696	RunNo: 91714						
Prep Date: 10/10/2022	Analysis Date: 10/12/2022	SeqNo: 3286929 Units: mg/L						
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qua						
Total Dissolved Solids	1050 20.0 1000	0 105 80 120						

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 23 of 25

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#: 2210315 23-Nov-22

Qual

RPDLimit

Client: AMAFCA **Project:** CMC Wet FY23 Sample ID: MB-70981 TestCode: SM 4500 Norg C: TKN SampType: MBLK Client ID: PBW Batch ID: 70981 RunNo: 92019 Analysis Date: 10/24/2022 Prep Date: 10/21/2022 SeqNo: 3301880 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD ND Nitrogen, Kjeldahl, Total 1.0 Sample ID: LCS-70981 SampType: LCS TestCode: SM 4500 Norg C: TKN

Client ID: LCSW	Batch ID: 70981			F	RunNo: 92	2019				
Prep Date: 10/21/2022	Analysis D	ate: 10	/24/2022	S	SeqNo: 33	301881	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Kjeldahl, Total	10	1.0	10.00	0	101	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 24 of 25

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#: 2210315 23-Nov-22

Client:AMAFCAProject:CMC Wet FY23

Sample ID: MB-70679	SampType: MBLK	TestCode: SM 2540D: TSS			
Client ID: PBW	Batch ID: 70679	RunNo: 91686			
Prep Date: 10/7/2022	Analysis Date: 10/10/2022	SeqNo: 3285851 Units	s: mg/L		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit Hig	hLimit %RP	D RPDLimit	Qual
Suspended Solids	ND 4.0				
Suspended Solids Sample ID: LCS-70679	ND 4.0 SampType: LCS	TestCode: SM 2540D: TSS			
1		TestCode: SM 2540D: TSS RunNo: 91686			
Sample ID: LCS-70679	SampType: LCS	RunNo: 91686	s: mg/L		
Sample ID: LCS-70679 Client ID: LCSW	SampType: LCS Batch ID: 70679 Analysis Date: 10/10/2022	RunNo: 91686 SeqNo: 3285852 Units	s: mg/L jhLimit %RP	D RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 25 of 25

ANAL	RONMENTAL Ysis Ratory	TEL: 505-345-	ental Analysis Labor 4901 Hawkii Albuquerque, NM 8 3975 FAX: 505-345- ww.hallenvironmenta	ns NE 87109 Sam 4107	ple Log-In Cheo	ck List
Client Name:	AMAFCA	Work Order Nur	nber: 2210315		RcptNo: 1	
Received By:	Joseph Alderette	10/6/2022 10:25:0	0 AM	04		
Completed By:	Sean Livingston	10/6/2022 11:10:5	3 AM	dt S-l-n		
Reviewed By:	10	10/6/22		Dalig	at	
Chain of Cus	<u>tody</u>					
1. Is Chain of C	ustody complete?		Yes 🔽	No 🗌	Not Present	
2. How was the	sample delivered?		Client			
<u>Log In</u>						
3. Was an attem	pt made to cool the samp	es?	Yes 🔽	No 🗌		
4. Were all samp	les received at a tempera	ure of >0° C to 6.0°C	Yes 🔽	No 🗌		
5. Sample(s) in p	proper container(s)?		Yes 🖌	No 🗌		
6. Sufficient sam	ple volume for indicated te	st(s)?	Yes 🗸	No 🗌		
	except VOA and ONG) pro		Yes 🔽			
	ive added to bottles?		Yes	No 🗹	NA 🗌	
9. Received at lea	ast 1 vial with headspace <	1/4" for AQ V/QA2	Yes 🔽	No 🗌		
	ple containers received br		Yes	No 🗹	of preserved	
11.Does paperwor (Note discrepar	k match bottle labels? ncies on chain of custody)		Yes 🔽	b	or pH: (<2) or >12 ur	less noted)
	prrectly identified on Chain	of Custody?	Yes 🔽	No 🗌	Adjusted?	
	analyses were requested?		Yes 🔽	No 🗌		
14. Were all holding (If no, notify cu	g times able to be met? stomer for authorization.)		Yes 🗹	No 🗌	Checked by: KPG	10.6.23
Special Handlii	ng (if applicable)					
	fied of all discrepancies w	th this order?	Yes	No 🗌	NA 🔽	
Person N By Whon Regardin Client Ins	n:	Date: Via:		one 🗌 Fax 🗌	In Person	
16. Additional rem	arks: NO BOD Botto	15. NO ELOLI bo	Hy For RGN	orthe To	10-1-72 noto RC	OD bottles not
17. <u>Cooler Inform</u> Cooler No		Seal Intact Seal No	-	Signed By	provided samples. Grande I and resu	to lab for these . E. coli for Rio North sample Its provided in lab report.

Client:	1.1		ustody Record	Turn-Around			SALL.				Н		LL	E	NV	/IF	20	N	ME	EN1	FA	L
	A	MAF	=CA	Standard	d 🗆 Rush	ı														AT		
				Project Name									/.hall							1		
Mailing	Address	::		CMC	Wet	FY23			49	01 Н									7100			
				Project #:				4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107														
Phone	#:			1				Analysis Request														
email o	or Fax#:	pchave	ZCAMAFCA. org	Project Mana	ager:																	
QA/QC Package:					havez		TMB's (8021)	TPH:8015D(GRO / DRO / MRO)	PCB's		8270SIMS		PO ₄ , SO ₄			Total Coliform (Present/Absent)			free			
Accred			ompliance	Sampler	. 11			AB's	DRO	82 P		2708		D ₂ , P			sent/	Jo -		enneated		
		□ Other	CONTRACTOR DE	On Ice:	I Yes	<u>Mes N</u>	Million P	F	1/0	\$/80	04.1	or 82		NO ₂ ,		(A	Pres	Attached		1 M		
A EDD	(Type)			# of Coolers:	2			BE	(GR	ides	od 5	310	etals	103,		0	rm (I	17		es		
				Cooler Temp	(including CF):	8+0.1=4.9	(°C)	A	15D	estic	letho	y 83	3 Me	Ľ,	(VO)	emi	olifo	¥	1	1		
Data	Time	Matrix	Sample Name	Container	Preservative	COLORY COUNTRY HORE CONTRACTOR COLORS AND		BTEX / MTBE	08:Hc	8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310 or	RCRA 8 Metals	Cl, F, Br, NO ₃ ,	8260 (VOA)	8270 (Semi-VOA)	otal Co	See	Sheet	Eco		
				Type and #	Туре	2210315		<u>m</u>	F	8			Ř	ō	8	8	Ĕ	VI	V 7	Ę		
	1215		R6 North-20221005			0)	\						-+					X			_	
10/5/22	0905	AQ	R6South-20221006			002	-				_			_				Х				
			sur color																	X		
																					-	
															\neg		_		-		-+	+
												+		-	\neg							
										-	+	+	+	+		-	_			+	+	
											+	+	+	-	-	-+			-		+	
								-+		+	+	-	-	-				\rightarrow		\rightarrow	+	
	Time: 10:25	Relinquishe SAM FI		Received by:	Via:	Date Time 10.6.22 10:	75	Rem	larks	: 5,	econ	4 (Coole	r ti	emp	- ?	3.3	+0.1	=	3.40	CA	10.6.22
		Relinquishe		Received by:	Via:	Date Time																0.6.22

Collaborative Monitoring Cooperative - Analyses List Attach to Chain of Custody

Please refer to attached NPDES Permit No. NMR04A00 Appendix F. Methods and minimum quantification levels (MQL's) will be those approved under 40 CFR 136 and specified in the attached permit

Analyte (Bold Indicates WQS)	CAS #	Fraction	Method #	MDL (µg/
 Hardness (Ca + Mg) 	NA	Total	200.7	2.4
Lead	7439-92-1	Dissolved	200.8	0.09
- Copper	7440-50-8	Dissolved	200.8	1.06
 Ammonia + organic nitrogen 	7664-41-7	Total	350.1	31.32
 Total Kjehldal Nitrogen 	17778-88-0	Total	351.2	58.78
- Nitrate + Nitrite	14797-55-8	Total	353.2	10.17
Polychlorinated biphenyls (PCBs)	1336-36-3	Total	1668	
Tetrahydrofuran (THF)	109-99-9	Total	8260C	0.014
bis(2-Ethylhexyl)phthalate	117-81-7	Total	8270D	7.9
Dibenzofuran	132-64-9	Total	8270D	0.2
- Indeno(1,2,3-cd)pyrene	193-39-5	Total		0.2
Benzo(b)fluoranthene	205-99-2	Total	8270D	0.2
Benzo(k)fluoranthene	207-08-9	Total	8270D	0.1
Chrysene	218-01-9		8270D	0.1
Benzo(a)pyrene	50-32-8	Total	8270D	0.2
Dibenzo(a,h)anthracene	53-70-3	Total	870D	0.3
Benzo(a)anthracene	56-55-3	Total	8270D	0.3
Dieldrin	60-57-1	Total	8270D	0.2
Pentachlorophenol		Total	8081	0.1
Benzidine	87-86-5	Total	8270D	0.2
Chemical Oxygen Demand	92-87-5	Total	8270D	0.1
Gross alpha (adjusted)	E1641638 ²	Total 🗠	НАСН	5100
Total Dissolved Solids	NA	Total	Method 900	0.1 pCi/L
Total Suspended Solids	E1642222 ²	Total	SM 2540C	60.4
Biological Oxygen Demand	NA	Total	SM 2540D	3450
Oil and Grease	N/A	Total	Standard Methods	930
		Total	1664A	5000
Ecoli-enumeration			SM 9223B	
pH			SM 4500	
Phosphorus		Dissolved	365.1	100
Phosphorus		Total	365.1	100
Chromium IV		Total	3500Cr C-2011	100

ATTACHMENT 2

FY 2023 WET SEASON COMPLETED DATA VERIFICATION AND VALIDATION (V&V) FORMS

Attachment 1.1 Water Quality Sample Data Verification and Validation Worksheet

Study Name: <u>Compliance Monitoring Cooperative (CMC)</u> Year: <u>FY 2023 (October 2022 – Wet Season Sample)</u> Project Coordinator: <u>For Data Review and Reporting – SJG, BHI</u> V&V Reviewer: <u>SJG</u> Data covered by this worksheet: <u>Rio Grande North – 10/5/2022</u> Version of Verification/Validation Procedures: <u>QAPP – AMAFCA SOP #5 (7/2022</u>)

Step 1: Verify Field Data

A. Are all Field Data forms present and complete? Xes No

If yes, proceed; if no, attempt to locate missing forms, then indicate any remaining missing forms and action taken.

Missing Field Data Forms	Action Taken

Total number of occurrences: 0

B. Are station name and ID, and sampling date and time on forms consistent with database? \boxtimes Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station and Parameter	Action Taken	Re-verified?

Total number of occurrences: 0

C. Are field data on forms consistent with database? \square Yes \square No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station	Sampling Date	Parameter(s) Corrected	Re-verified?

Total number of occurrences: 0

D. Are RIDs correct and associated with the correct analytical suite, media subdivision (e.g. surface water, municipal waste, etc.) and activity type (e.g. Field observation, Routine sample, QA sample etc.)?

Yes No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify

Station/RID	Sampling Date	RID Corrected	Re-verified?		

Total number of occurrences: 0

Step 1 Completed Initials: SJG Date: <u>12/14/22</u>

Step 2: Verify Data Deliverables

Α.	Have all o	data in	question	been	delivered?	\boxtimes	Yes		No
----	------------	---------	----------	------	------------	-------------	-----	--	----

If yes, proceed; if no, indicate RIDs with missing data (samples or blanks) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken. Complete this step upon receipt of all missing data.

RID	Submittal Date	Missing Data/Parameters	Date of Initial Verification	Date Missing Data Were Received

Total number of occurrences: 0

В.	Do all of the analy	rtical suites have the correct number and type of analy	rtes.	Yes	🛛 No
----	---------------------	---	-------	-----	------

If yes, proceed; if no, indicate RIDs with missing or incorrect analyte(s) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken.

RID	Submittal Date	Missing or Incorrect Parameters	Action Taken	Re-verified?
	<u>11/30/22 emailed</u> <u>AMAFCA on missing</u> parameter; BOD	BOD		

	bottle not submitted for sample.		

*Note – HEAL Lab report order numbers 2210242 & 2210315.

Step 2 Completed Initials: <u>SJG</u> Date: <u>12/14/22</u>

.....

Step 3: Verify Flow Data

*Note – Not Applicable – no flow data provided with CMC sample collection

A._Identify incorrect or missing data on the flow calculation spreadsheet and correct errors.

Station	Sampling Date	Flow data missing or incorrect?	

Total number of occurrences: 0

B. Identify incorrect or missing discharge measurements, correct errors in database and re-verify.

Station	Sampling Date	Flow data missing or incorrect?	Re-verified?

.....

change results without written approval (from lab or QA officer) and associated documentation).

If no, proceed; if yes, indicate results with missing information or questionable results or attach report. Contact data source and indicate action taken. Complete this step upon receipt of missing information or clarification of questionable results (clarify questionable results only, DO NOT

Step 4: Verify Analytical Results for Missing Information or Questionable Results

Were any results with missing/questionable information identified?

Total number of occurrences: 0

Not Applicable Step 3 Completed Initials: SJG Date: 12/14/22

results as "Total	RID	Sample Date	Missing or Questionable Information/Results	Action Taken
sample".		<u>10/5/2022</u>	Dissolved Phosphorous results as "Total Phosphorous" for "filtered	BHI added note to the lab report.

Total number of occurrences: 1

Step 4 Completed Initials: SJG Date: 12/14/22

Step 5: Validate Blanks Results

Were any analytes of concern detected in blank samples?
Yes Xo

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager, with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes have been added to database correctly.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validatio n Code/Fla g Applied	Code/Flag verified in database? *

*See validation procedures to determine which associated data need to be flagged and include on Validation Codes Form.

Total number of occurrences: 0

Step 5 Completed	Initials: <u>SJG</u>	Date: <u>12/14/22</u>

Step 6: Validate Holding Times Violations

Were any samples submitted that did not meet specified holding times?
Yes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validation Code/Flag Applied	Code/Flag verified in database to ALL associated data?*
-----	----------------	-----------	---------	----------	------------------------------------	---

*See validation procedures to determine which associated data need to be flagged.

*Note – Lab reports lists pH with hold time flag. Database uses field data reported pH, so this is hold time is not applicable.

Total number of occurrences: 0

Step 6 Completed Initials: SJG Date: 12/14/22

Step 7: Validate Replicate/Duplicate Results (if applicable)

Were any replicate/duplicate pairs submitted outside of the established control limit of 20%? \Box Yes \boxtimes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID Pairs	Replicate or Duplicate?	Sample Date	Parameter	RPD	Validation Code/Flag Applied	Code/Flag verified in database applied?*

Total number of occurrences: 0

Step 7 Completed Initials: SJG Date: 12/14/22

After all of the above steps have been completed, save and print the worksheet, attach all applicable supplemental information and sign below.

I acknowledge that the data verification and validation process has been completed for the data identified above in accordance with the procedures described in the CMC QAPP, SOP #2

Alarch Com

12/14/22

Data Verifier/Validator Signature

Date

COMPLETION OF DATA VERIFICATION AND VALIDATION PROCESS

Once the data verification and validation process has been completed for the <u>entire study</u> (note: if the worksheet is for a subset of the data from a study, be sure ALL the data for the entire study is included before final completion of the data verification and validation process), notify the NMSQUID administrator that the process is complete and request that "V V in STORET" be added to the project title.

Once all data have been verified and validated for a study provide <u>copies</u> of ALL *Data Verification and Validation Worksheets* and attachments associated with the study to the Quality Assurance Officer and retain <u>originals</u> in the project binder.

Attachment 1.2 SWQB Validation Codes

When deficiencies are identified through the data verification and validation process, AMAFCA documents or "flags" the deficiencies by assigning validation codes. All data collected from the last compliant QC sample and up to the next compliant QC sample are assigned validation codes. The validation code alerts the data user that the results are outside QA control limits and may require re-sampling or a separate, qualitative analysis based on professional judgment.

Validation Code	Definition	WQX Equivalent
A1	Sample not collected according to SOP	
B1	Chemical was detected in the field blank at a concentration less than 5% of the sample concentration.	
BN	Blanks NOT collected during sampling run	
BU	Detection in blank. Analyte was not detected in this sample above the method's sample detection limit.	BU
RB1	Chemical was detected in the field blank at a concentration greater than or equal to 5% of the sample concentration. Results for this sample are rejected because they may be the result of contamination; the results may not be reported or used for regulatory compliance purposes.	В
R1	Rejected due to incorrect sample preservation	R
R2	Rejected due to equipment failure in the field	R
R3	Rejected based on best professional judgment	R
D1	Spike recovery not within method acceptance limits	
F1	Sample filter time exceeded	
J1	Estimated: the analyte was positively identified and the associated value is an approximate concentration of the analyte in the sample	J
K1	Holding time violation	Н
Ea	Estimated-Incubation temperature between 35.5 and 38.0° Celsius	
Er	Rejected-Incubation temperature < 34.5 or >38.0° Celsius	
PD1	Percent difference between duplicate samples excessive	
S1	Per SLD, uncertainties (sigmas) are expressed as one standard deviation, i.e. one standard error. Small negative or positive values that are less than two standard deviations should be interpreted as "less than the detection limit."	
S2	Data are suspect but deemed usable based on best professional judgment; documentation of justification is required and should be included in the Data Verification and Validation Packet and reported with results	
Z1	Macroinvertebrate data did not meet QC criteria specified in Section 2.5 of QAPP	
H1	Habitat data did not meet QC criteria specified in Section 2.5 of QAPP	

Attachment 1.1 Water Quality Sample Data Verification and Validation Worksheet

Study Name: <u>Compliance Monitoring Cooperative (CMC)</u> Year: <u>FY 2023 (October 2022 – Wet Season Sample)</u> Project Coordinator: <u>For Data Review and Reporting – SJG, BHI</u> V&V Reviewer: <u>SJG</u> Data covered by this worksheet: <u>Alameda – 10/5/2022– E. coli Only Sample</u> Version of Verification/Validation Procedures: QAPP –AMAFCA SOP #5 (7/2022)

Step 1: Verify Field Data

A. Are all Field Data forms present and complete? Xes No

If yes, proceed; if no, attempt to locate missing forms, then indicate any remaining missing forms and action taken.

Missing Field Data Forms	Action Taken

Total number of occurrences: 0

B. Are station name and ID, and sampling date and time on forms consistent with database? \boxtimes Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station and Parameter	Action Taken	Re-verified?

Total number of occurrences: 0

C. Are field data on forms consistent with database? \square Yes \square No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station	Sampling Date	Parameter(s) Corrected	Re-verified?

Total number of occurrences: 0

D. Are RIDs correct and associated with the correct analytical suite, media subdivision (e.g. surface water, municipal waste, etc.) and activity type (e.g. Field observation, Routine sample, QA sample etc.)?

Yes No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify

Station/RID	Sampling Date	RID Corrected	Re-verified?	

Total number of occurrences: 0

Step 1 Completed Initials: SJG Date: 12/7/22

Step 2: Verify Data Deliverables

A. Have all data in question been delivered? Xes No

If yes, proceed; if no, indicate RIDs with missing data (samples or blanks) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken. Complete this step upon receipt of all missing data.

RID	Submittal Date	Missing Data/Parameters	Date of Initial Verification	Date Missing Data Were Received

Total number of occurrences: 0

B. Do all of the analytical suites have the correct number and type of analytes. 🛛 Yes 🗌 No

If yes, proceed; if no, indicate RIDs with missing or incorrect analyte(s) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken.

RID	Submittal Date	Missing or Incorrect Parameters	Action Taken	Re-verified?		

Step 2 Completed Initials: SJG Date: 12/7/22

Step 3: Verify Flow Data

*Note – Not Applicable – no flow data provided with CMC sample collection

A._Identify incorrect or missing data on the flow calculation spreadsheet and correct errors.

Station	Sampling Date	Flow data missing or incorrect?	

Total number of occurrences: 0

B. Identify incorrect or missing discharge measurements, correct errors in database and re-verify.

Station	Sampling Date	Flow data missing or incorrect?	Re-verified?

Total number of occurrences: 0	Not Applicable		
	Step 3 Completed	Initials: <u>SJG</u>	Date: <u>12/7/22</u>

Step 4: Verify Analytical Results for Missing Information or Questionable Results

Were any results with missing/questionable information identified?
Yes No

If no, proceed; if yes, indicate results with missing information or questionable results or attach report. Contact data source and indicate action taken. Complete this step upon receipt of missing information or clarification of questionable results (clarify questionable results only, DO NOT change results without written approval (from lab or QA officer) and associated documentation).

RID	Sample Date	Missing or Questionable Information/Results	Action Taken

Total number of occurrences: 0			
	Step 4 Completed	Initials: <u>SJG</u>	Date: <u>12/7/22</u>

Step 5: Validate Blanks Results

Were any analytes of concern detected in blank samples? \Box Yes \boxtimes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager, with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes have been added to database correctly.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validatio n Code/Fla g Applied	Code/Flag verified in database? *

*See validation procedures to determine which associated data need to be flagged and include on Validation Codes Form.

Total number of occurrences: 0

Step 5 Completed	Initials: <u>SJG</u>	Date: <u>12/7/22</u>

Step 6: Validate Holding Times Violations

Were any samples submitted that did not meet specified holding times? Yes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validation Code/Flag Applied	Code/Flag verified in database to ALL associated data?*

*See validation procedures to determine which associated data need to be flagged.

Total number of occurrences: 0

Step 6 Completed Initials: <u>SJG</u> Date: <u>12/7/22</u>

Step 7: Validate Replicate/Duplicate Results (if applicable)

Were any replicate/duplicate pairs submitted outside of the established control limit of 20%? \Box Yes \boxtimes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID Pairs	Replicate or Duplicate?	Sample Date	Parameter	RPD	Validation Code/Flag Applied	Code/Flag verified in database applied?*

Total number of occurrences: 0

Step 7 Completed Initials: SJG Date: 12/7/22

After all of the above steps have been completed, save and print the worksheet, attach all applicable supplemental information and sign below.

I acknowledge that the data verification and validation process has been completed for the data identified above in accordance with the procedures described in the CMC QAPP, SOP #2

Sarch County

Data Verifier/Validator Signature

12/7/22

Date

COMPLETION OF DATA VERIFICATION AND VALIDATION PROCESS

Once the data verification and validation process has been completed for the <u>entire study</u> (note: if the worksheet is for a subset of the data from a study, be sure ALL the data for the entire study is included before final completion of the data verification and validation process), notify the NMSQUID administrator that the process is complete and request that "V V in STORET" be added to the project title.

Once all data have been verified and validated for a study provide <u>copies</u> of ALL *Data Verification and Validation Worksheets* and attachments associated with the study to the Quality Assurance Officer and retain <u>originals</u> in the project binder.

Attachment 1.2 SWQB Validation Codes

When deficiencies are identified through the data verification and validation process, AMAFCA documents or "flags" the deficiencies by assigning validation codes. All data collected from the last compliant QC sample and up to the next compliant QC sample are assigned validation codes. The validation code alerts the data user that the results are outside QA control limits and may require re-sampling or a separate, qualitative analysis based on professional judgment.

Validation Code	Definition	WQX Equivalent
A1	Sample not collected according to SOP	
B1	Chemical was detected in the field blank at a concentration less than 5% of the sample concentration.	
BN	Blanks NOT collected during sampling run	
BU	Detection in blank. Analyte was not detected in this sample above the method's sample detection limit.	BU
RB1	Chemical was detected in the field blank at a concentration greater than or equal to 5% of the sample concentration. Results for this sample are rejected because they may be the result of contamination; the results may not be reported or used for regulatory compliance purposes.	В
R1	Rejected due to incorrect sample preservation	R
R2	Rejected due to equipment failure in the field	R
R3	Rejected based on best professional judgment	R
D1	Spike recovery not within method acceptance limits	
F1	Sample filter time exceeded	
J1	Estimated: the analyte was positively identified and the associated value is an approximate concentration of the analyte in the sample	J
K1	Holding time violation	Н
Ea	Estimated-Incubation temperature between 35.5 and 38.0° Celsius	
Er	Rejected-Incubation temperature < 34.5 or >38.0° Celsius	
PD1	Percent difference between duplicate samples excessive	
S1	Per SLD, uncertainties (sigmas) are expressed as one standard deviation, i.e. one standard error. Small negative or positive values that are less than two standard deviations should be interpreted as "less than the detection limit."	
S2	Data are suspect but deemed usable based on best professional judgment; documentation of justification is required and should be included in the Data Verification and Validation Packet and reported with results	
Z1	Macroinvertebrate data did not meet QC criteria specified in Section 2.5 of QAPP	
H1	Habitat data did not meet QC criteria specified in Section 2.5 of QAPP	

Attachment 1.1 Water Quality Sample Data Verification and Validation Worksheet

Study Name: <u>Compliance Monitoring Cooperative (CMC)</u> Year: <u>: FY 2023 (October 2022 – Wet Season Sample)</u>Project Coordinator: <u>For Data Review and Reporting – SJG, BHI</u> V&V Reviewer: <u>SJG</u> Data covered by this worksheet: <u>Rio Grande South – 10/6/2022</u> Version of Verification/Validation Procedures: QAPP –AMAFCA SOP #5 (7/2022)

Step 1: Verify Field Data

A. Are all Field Data forms present and complete? 🛛 Yes 🗌 No

If yes, proceed; if no, attempt to locate missing forms, then indicate any remaining missing forms and action taken.

Missing Field Data Forms	Action Taken

Total number of occurrences: 0

B. Are station name and ID, and sampling date and time on forms consistent with database? 🛛 Yes 🗌 No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station and Parameter	Action Taken	Re-verified?

Total number of occurrences: 0

C. Are field data on forms consistent with database? 🛛 Yes 🗌 No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station	Sampling Date	Parameter(s) Corrected	Re-verified?

Total number of occurrences: 0

D. Are RIDs correct and associated with the correct analytical suite, media subdivision (e.g. surface water, municipal waste, etc.) and activity type (e.g. Field observation, Routine sample, QA sample etc.)?

🛛 Yes 🗌 No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify

Station/RID	Sampling Date	RID Corrected	Re-verified?

Total number of occurrences: 0

Step 1 Completed Initials: SJG Date: 12/14/22

Step 2: Verify Data Deliverables

A. Have all data in question been delivered? \square Yes \square No

If yes, proceed; if no, indicate RIDs with missing data (samples or blanks) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken. Complete this step upon receipt of all missing data.

RID	Submittal Date	Missing Data/Parameters	Date of Initial Verification	Date Missing Data Were Received

Total number of occurrences: 0

B. Do all of the analytical suites have the correct number and type of analytes. Yes Xes

If yes, proceed; if no, indicate RIDs with missing or incorrect analyte(s) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken.

RID	Submittal Date	Missing or Incorrect Parameters	Action Taken	Re-verified?
	<u>11/30/22 emailed</u> <u>AMAFCA on</u> <u>missing parameter;</u> <u>BOD bottle not</u>	BOD		

	submitted for sample.		

*Note – HEAL Lab report order number 2210315.

Step 2 Completed Initials: SJG Date: 12/14/22

Step 3: Verify Flow Data

*Note – Not Applicable – no flow data provided with CMC sample collection

A._Identify incorrect or missing data on the flow calculation spreadsheet and correct errors.

Station	Sampling Date	Flow data missing or incorrect?

Total number of occurrences: 0

B. Identify incorrect or missing discharge measurements, correct errors in database and re-verify.

Station	Sampling Date	Flow data missing or incorrect?	Re-verified?

Total number of occurrences: <u>0</u>	Not Applicable		
	Step 3 Completed	Initials: SJG	Date: <u>12/14/22</u>
Step 4: Verify Analytical Results for Missing Information or Questionable Results			

Were any results with missing/questionable information identified? Xes ON

If no, proceed; if yes, indicate results with missing information or questionable results or attach report. Contact data source and indicate action taken. Complete this step upon receipt of missing information or clarification of questionable results (clarify questionable results only, DO NOT change results without written approval (from lab or QA officer) and associated documentation).

RID	Sample Date	Missing or Questionable Information/Results	Action Taken
Rio Grande South	10/6/2022	Lab report lists Dissolved Phosphorous results as "Total Phosphorous" for "filtered sample".	BHI added note to the lab report.

*Note – HEAL Lab report order number 2210315.

Total number of occurrences: 1

Step 4 Completed Initials: SJG Date: 12/14/22

Step 5: Validate Blanks Results

Were any analytes of concern detected in blank samples?
Yes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager, with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes have been added to database correctly.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validatio n Code/Fla g Applied	Code/Flag verified in database? *

*See validation procedures to determine which associated data need to be flagged and include on Validation Codes Form.

Total number of occurrences: 0

Step 5 Completed Initials: <u>SJG</u> Date: <u>12/14/22</u>

Step 6: Validate Holding Times Violations

11/0 00 000		did not monot an acifical ha		
vvere an	y samples submitted that	did not meet specified ho	iaing times?	res 🖂 No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validation Code/Flag Applied	Code/Flag verified in database to ALL associated data?*

*See validation procedures to determine which associated data need to be flagged.

*Note – Lab reports lists pH with hold time flag. Database uses field data reported pH, so this is hold time is not applicable.

Total number of occurrences: 0

Step 6 Completed Initials: SJG Date: 12/14/22

Step 7: Validate Replicate/Duplicate Results (if applicable)

Were any replicate/duplicate pairs submitted outside of the established control limit of 20%? \Box Yes \boxtimes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID Pairs	Replicate or Duplicate?	Sample Date	Parameter	RPD	Validation Code/Flag Applied	Code/Flag verified in database applied?*

Total number of occurrences: 0

Step 7 Completed Initials: SJG Date: 12/14/22

After all of the above steps have been completed, save and print the worksheet, attach all applicable supplemental information and sign below.

I acknowledge that the data verification and validation process has been completed for the data identified above in accordance with the procedures described in the CMC QAPP, SOP #2

Sarch County 12/14/22

Data Verifier/Validator Signature

Date

COMPLETION OF DATA VERIFICATION AND VALIDATION PROCESS

Once the data verification and validation process has been completed for the <u>entire study</u> (note: if the worksheet is for a subset of the data from a study, be sure ALL the data for the entire study is included before final completion of the data verification and validation process), notify the NMSQUID administrator that the process is complete and request that "V V in STORET" be added to the project title.

Once all data have been verified and validated for a study provide <u>copies</u> of ALL *Data Verification and Validation Worksheets* and attachments associated with the study to the Quality Assurance Officer and retain <u>originals</u> in the project binder.

Attachment 1.2 SWQB Validation Codes

When deficiencies are identified through the data verification and validation process, AMAFCA documents or "flags" the deficiencies by assigning validation codes. All data collected from the last compliant QC sample and up to the next compliant QC sample are assigned validation codes. The validation code alerts the data user that the results are outside QA control limits and may require re-sampling or a separate, qualitative analysis based on professional judgment.

Validation Code	Definition	WQX Equivalent
A1	Sample not collected according to SOP	
B1	Chemical was detected in the field blank at a concentration less than 5% of the sample concentration.	
BN	Blanks NOT collected during sampling run	
BU	Detection in blank. Analyte was not detected in this sample above the method's sample detection limit.	BU
RB1	Chemical was detected in the field blank at a concentration greater than or equal to 5% of the sample concentration. Results for this sample are rejected because they may be the result of contamination; the results may not be reported or used for regulatory compliance purposes.	В
R1	Rejected due to incorrect sample preservation	R
R2	Rejected due to equipment failure in the field	R
R3	Rejected based on best professional judgment	R
D1	Spike recovery not within method acceptance limits	
F1	Sample filter time exceeded	
J1	Estimated: the analyte was positively identified and the associated value is an approximate concentration of the analyte in the sample	J
K1	Holding time violation	Н
Ea	Estimated-Incubation temperature between 35.5 and 38.0° Celsius	
Er	Rejected-Incubation temperature < 34.5 or >38.0° Celsius	
PD1	Percent difference between duplicate samples excessive	
S1	Per SLD, uncertainties (sigmas) are expressed as one standard deviation, i.e. one standard error. Small negative or positive values that are less than two standard deviations should be interpreted as "less than the detection limit."	
S2	Data are suspect but deemed usable based on best professional judgment; documentation of justification is required and should be included in the Data Verification and Validation Packet and reported with results	
Z1	Macroinvertebrate data did not meet QC criteria specified in Section 2.5 of QAPP	
H1	Habitat data did not meet QC criteria specified in Section 2.5 of QAPP	

Outcome Report for Fiscal Year 2022–2023

(July 1, 2022 to June 30, 2023)

 Albuquerque Metropolitan Arroyo Flood Control Authority (AMAFCA) • City of Albuquerque •
 Bernalillo County • Town of Bernalillo • Village of Corrales • Ciudad Soil and Water Conservation District • Eastern Sandoval County Arroyo Flood Control Authority (ESCAFCA) • Village of Los Ranchos de Albuquerque • Department of Transportation (NMDOT) • City of Rio Rancho • Sandoval County • Southern Sandoval County Arroyo Flood Control Authority (SSCAFCA)

Introduction

The outcomes report is designed to illustrate the collective successes of the Middle Rio Grande Stormwater Quality team. In fiscal year 2022–2023, the Storm Team reached over 100,000 individuals in the Albuquerque Metro area through special events, educational efforts, as well as digital promotions via various social media and the website.

The Storm Team is a collaborative organization made of of the following: The Albuquerque Metropolitan Arroyo Flood Control Authority, the City of Albuquerque, Bernalillo County, the City of Rio Rancho, Ciudad Soil and Water Conservation District, the New Mexico Department of Transportation, the Southern Sandoval County Arroyo Flood Control Authority, the Town of Bernalillo, the Village of Corrales and the Village of Los Ranchos.

Albuquerque Metropolitan Arroyo Flood Control Authority (AMAFCA) • City of Albuquerque • Bernalillo County • Town of Bernalillo • Village of Corrales • Ciudad Soil and Water Conservation District • Eastern Sandoval County Arroyo Flood Control Authority (ESCAFCA) • Village of Los Ranchos de Albuquerque • Department of Transportation (NMDOT) • City of Rio Rancho • Sandoval County • Southern Sandoval County Arroyo Flood Control Authority (SSCAFCA)

Table of Contents

Bernalillo County1
City of Albuquerque 5
Middle Rio Grande Stormwater Quality Team
Village of Corrales
Village of Los Ranchos
Ciudad Soil and Water Conservation District
Southern Sandoval County Arroyo Flood Control Authority 109
Albuquerque Bernalillo County Water Utility Authority
Town of Bernalillo
UNM BEMP Bosque School
<u>AMAFCA141</u>
FY22 Watershed Stewards Final Report

Will be updated after content is complete.

Bernalillo County

Public Outreach and Education Tracking FY2023: July 1, 2022 – June 30, 2023

Date	Location	Event Topic	Description of Education/Outreach Event Program/Materials	NRS Programs	Partner Organizations	Parti- cipants	Source for Participant Count
QI				1			'
7/9, 7/30, 8/27, 9/10, 9/24/2022	Tijeras Creek Remediation Project	Volunteer work days, 3 hrs each	Working on watershed restoration by addressing erosion, removing invasive plants, addressing tree health (pruning dead/broken branches), had watering	Water Conservation, Stormwater	Ciudad SWCD, TCWC organization members	27	attendance
7/22/2022	ABCWUA water bill insert	Residential rainwater harvesting PSA	Water bill insert on residential rainwater harvesting that included benefits, steps you can take, and link to more resources.	Water Conservation, Stormwater	Arid LID Coalition	210,000	Total printed copies of insert
8/13/2022	Gutierrez Hubbell House (6029 Isleta Blvd SE, Albuquerque, NM 87105)	Drip Irrigation Repair for Homeowners Workshop	Hands-on workshop for homeowners on drip irrigation repair.	Water Conservation	ABCWUA	17	Headcount at event. 24 registered per Cervis.
9/14/2022	GovDelivery Email	News Bulletin	News Bulletin advertising Water Fair and Well Owner Workshop	Water Conservation, Hydrogeology, Review and Permitting		1,345	Unique recipients for Water Conservation, Hydrogeology, and Review and Permitting email lists
9/25/2022	Los Vecinos Community Center (478 NM-333, Tijeras, NM 87059)	East Mountain Celebration	Natural Resources Services table in Bernalillo County tent. Provided information to educate County residents on stormwater quality, water conservation methods and incentive programs, and groundwater monitoring program.	Water Conservation, Stormwater, Hydrogeology, Review and Permitting		2,300	BernCo Office of Community Engagement and Outreach
9/25/2022	Los Vecinos Community Center (478 NM-333, Tijeras, NM 87059)	Water Fair	Provided staff support for NMDOH/NMED Water Fair at East Mountain Celebration. Included mail out of flyer advertising water fair to 600 Carnuel residents.	Hydrogeology, Review and Permitting	NMDOH, NMED	51	NMDOH count of water samples analyzed

Q2							
10/8/2022	Polk Middle School (2220 Raymac Rd SW, Albuquerque NM 87105)	Household Hazardous Waste (HHW) Collection Event`	HHW weekend collection event	Stormwater, Review & Permitting		16	Count
10/15/2022	James McGrane Public Safety Complex (48 Public School Rd, Tijeras, NM 87059)	Well Owner Workshop	3 hour presentation on water quality testing, drinking water contaminants, water rights, well permiting and tagging, East Mountain groundwater resources, financial incentives for water conservation.	Water Conservation, Stormwater, Hydrogeology, Review and Permitting	NMDOH, NMED, OSE	29	NMDOH
11/16/2022	Albuquerque Open Space Visitors Center (6500 Coors Blvd NW, Albuquerque, NM 87120)	Green Stormwater Infrastructure Maintenance Training through ABCWUA WaterSmart Academy	Cofacilitated training with MRWM Landscape Architects on arid-adapted green stormwater infrastructure maintenance for an audience of landscape professionals.	Stormwater, Water Conservation	ABCWUA, MRWM Landscape Architects	8	attendance
11/18/2022	Expo New Mexico	STEAM Discovery Fair	6 hour event for middle school students highlighting Natural Resources as a STEAM career. Worked with the Enviroscapes model to disscuss hydrology, pollution prevention and water conservation.	Water Conservation, Stormwater, Hydrogeology, Review and Permitting	Big Brothers Big Sisters of Central New Mexico	1,506	attendance
12/10/2022	Tijeras Creek Remediation Project	Volunteer work days, 3 hrs each	Working on watershed restoration by addressing erosion, removing invasive plants, addressing tree health (pruning dead/broken branches), had watering	Water Conservation, Stormwater	Ciudad SWCD, TCWC organization members	5	attendance
12/14/2022	Bernco PROS	GSI/LID Standards Lunch & Learn	Lunch and a presentation about the new Bernalillo County Green Stormwater Infrastructure / Low Impact Development (GSI/ LID) Standards for staff that work on Bernalillo County public and private development projects.	Stormwater / Review & Permitting		9	attendance
Q3							·
2/1/2023	Albuquerque Open Space Visitors Center (6500 Coors Blvd NW, Albuquerque, NM 87120)	Green Stormwater Infrastructure Maintenance Training through ABCWUA WaterSmart Academy	Cofacilitated training with MRWM Landscape Architects on arid-adapted green stormwater infrastructure maintenance for an audience of landscape professionals.	Stormwater, Water Conservation	ABCWUA, MRWM Landscape Architects	16	attendance

3/1 – 3/3/2023	Hybrid conference (virtual and in- person at Indian Pueblo Cultural Center at 2401 12th St NW, Albuquerque, NM 87104)	Land and Water Summit	Professional conference that provides 2-days of presentations and 1-day tour of local Green Stormwater Infrastructure projects. 2023 conference theme: Communities, Collaboration, & Climate Change, higlighting local, collaborative responses to climate change. BernCo is a conference sponsor and BernCo staff sit on conference Planning Committee.	Water Conservation, Stormwater Quality, Hydrogeology	Ciudad Soil and Water Conservation District, Arid LID Coalition	378	Whova (virtual conference platform) report
3/11/2023	Tijeras Creek Remediation Project	Volunteer work days, 3 hrs each	Working on watershed restoration by addressing erosion, removing invasive plants, addressing tree health (pruning dead/broken branches), had watering	Water Conservation, Stormwater	Ciudad SWCD, TCWC organization members	5	attendance
3/18/2023	Valle de Oro Backyard Refuge (7851 2nd St SW, Albuquerque, NM 87105)	"Incorporating Passive Rainwater Harvesting into Your Backyard Refuge" presentation at Backyard Refuge Day	Presentation addressed steps to designing, constructing, and maintaining residential passive rainwater harvesting features, drawing contect from residential passive rainwater harvesting video series at bernco.gov/rainwater.	Water Conservation, Stormwater Quality	Friends of Valle de Oro Refuge	54	Friends of Valle de Oro Refuge count
3/20/2023	Gutierrez Hubbell House (6029 Isleta Blvd SE, Albuquerque, NM 87105)	Hands-on Training on Drip Irrigation Installation for Grow the Growers Farm Training Program	Hands-on instruction on installation of drip irrigation systems for 2023 Grow the Growers trainees. Workshop included installation of irrigation main lines in Gutierrez Hubbell House Medicinal Garden.	Water Conservation		5	Workshop headcount
3/14/2023, 3/17/2023, 4/7/2023	GovDelivery Email	News Bulletin	News Bulletins advertising Backyard Refuge Day, Irrigation Efficiency Exhibit and workshops	Water Conservation, Stormwater Quality, Hydrogeology		1,502	GovDelivery report
2/23/2023, 2/28/2023, 3/9/2023, 3/16/2023	Mountain View Community Center	GSI Maintenance Training for BernCo Land Management, Drainage Maintenance, and Clean Team staff	Education for landscape maintenance staff for understanding what Green Stormwater Infrastructure is, how to maintain GSI facilities, and how to maintain plants in and around these facilities.	Water Conservation, Stormwater Quality	Arid LID Coalition	60	headcount at training

Q4							
4/1/2023 – 5/27/2023	Gutierrez Hubbell House (6029 Isleta Blvd SE, Albuquerque, NM 87105)	Irrigation Efficiency Exhibit	Exhibit based on content from Water Authority's Irrigation Efficiency Guide. Addresses how to efficiently water different types of landscapes, using drip irrigation, spray irrigation, hose watering, flood irrigation, and rainwater harvesting. Includes hands-on elements to demystify irrigation systems. In English and Spanish.	Water Conservation, Stormwater Quality	Water Authority, Middle Rio Grande Conservancy District, Arid LID Coalition, Groundwork Studio	704	Individual and group visitor counts per Open Space (Dave Ottaviano)
4/8/2023	Gutierrez Hubbell House (6029 Isleta Blvd SE, Albuquerque, NM 87105)	Tree Irrigation Workshop	Hands-on workshop on how to install drip irrigation for trees. Workshop attendees installed new drip lines to trees in Gutierrez Hubbell House Medicinal Garden.	Water Conservation	Water Authority, Middle Rio Grande Conservancy District, Arid LID Coalition, Groundwork Studio	16	Workshop headcount
4/13/2023	TransCon, Las Cruces, NM	Panel: Why GSI? Green Stormwater Solutions for Transportation Insfrastructure	Panel presenation regarding GSI in transportation projects	Water Conservation/ Stormwater	BHI, NMDOT, PLAND Collaborative	40	Estimate
4/15/2023	Gutierrez Hubbell House (6029 Isleta Blvd SE, Albuquerque, NM 87105)	Perennial Irrigation Workshop	Hands-on workshop on how to install drip irrigation for perennials and grasses. Workshop attendees installed new drip lines to perennials in Gutierrez Hubbell House Medicinal Garden.	Water Conservation	Water Authority, Middle Rio Grande Conservancy District, Arid LID Coalition, Groundwork Studio	10	Workshop headcount
4/17/2023	Bernalillo County Alvarado Square	NRS Earth Day Lunch and Learn – Bioremediation in GSI Features	Presentation from this year's Land and Water Summit by Reese Baker of the RainCatcher. After hearing the talk you'll understand why we can't stop talking about GSI and that there are simple solutions all around us to improve water quality and the urban environment.	Water Conservation, Stormwater Quality	Reese Baker, RainCatcher	22	attendance
4/19/2023	Bernalillo County Alvarado Square	IDDE training	Training for Bernalillo County Zoning Enforcement staff for illicit discharge detection and elimination	Stormwater Quality		8	attendance
4/22/2023, 6/10/2023, 6/24/2023	Tijeras Creek Remediation Project	TCRP workday, 3 hrs each	Working on watershed restoration by addressing erosion, removing invasive plants, addressing tree health (pruning dead/broken branches), had watering	Water Conservation, Stormwater Quality	Ciudad SWCD, TCWC organization members	19	attendance

4/23/2023	Westside Community Center	South Valley Pride Day	Natural Resources Services table in Bernalillo County tent. Provided information to educate County residents on stormwater quality, water conservation methods and incentive programs, and groundwater monitoring program.	Water Conservation, Stormwater Quality		4,000	Estimate
4/26/2023	Albuquerque Open Space Visitors Center (6500 Coors Blvd NW, Albuquerque, NM 87120)	Green Stormwater Infrastructure Maintenance Training through ABCWUA WaterSmart Academy	Cofacilitated training with MRWM Landscape Architects on arid-adapted green stormwater infrastructure maintenance for an audience of landscape professionals.	Stormwater, Water Conservation	ABCWUA, MRWM Landscape Architects	4	attendance
4/29/2023	Gutierrez Hubbell House (6029 Isleta Blvd SE, Albuquerque, NM 87105)	Drip Irrigation Fundamentals Workshop	Hands-on workshop on how to build a drip irrigation system that attaches to a hose bib and how to make the most common repairs to a drip system.	Water Conservation	Water Authority, Middle Rio Grande Conservancy District, Arid LID Coalition, Groundwork Studio	16	Workshop headcount
5/13/2023	James McGrane Public Safety Complex (48 Public School Rd, Tijeras, NM 87059)	Tablazon Groundwater	Presentation to Tablazon Water Users Association on Updates to the Groundwater Program, Sandia Basin Closure update, East Mountain and Tablazon water level trends.	Hydrogeology		30	TWUA sign in sheet
5/18/2023	GovDelivery Email	News Bulletin	News Bulletin advertising new Passive Rainwater Harvesting Guide, Next Generation Water Summit, changes to Water Conservation Incentive Program	Water Conservation, Stormwater Quality		1,972	GovDelivery report
5/25/2023	Online	Tijeras Creek Natural Resources Cluster Meeting	Tijeras Creek Watershed Restoration Project discussion and solicitation of ideas for project; watershed planning for the Upper Tijeras Creek Watershed	Stormwater Quality	Ciudad Soil and Water Conservation District, Bernco OS, City OS	11	meeting headcount
6/3/2023	Paradise Hills Community Center	Day in Paradise community event	Evening in Paradise – District focused general community event	Water Conservation, Stormwater Quality		1,700	
6/8/2023	Los Vecinos Community Center (478 NM-333, Tijeras, NM 87059)	Comprehensive Plan Community Update – South Valle	Comprehensive Plan community meeting, Staff offered general support for Q&A for environmental issues	Stormwater/ Water Conservation / Hydrogeology / Review & Permitting		30	Estimate
6/13/2023	Westside Community Center	Comprehensive Plan Community Update - South Valley	Comprehensive Plan community meeting, Staff offered general support for Q&A for environmental issues	Stormwater/ Water Conservation / Hydrogeology / Review & Permitting		40	Estimate

6/17/2023	TCRP, Carlito Springs	Master Naturalist presentation re: stormwater and watershed restoration; geology and hydrogeology	Stormwater, watershed restoration, invasive plant species; geology and hydrogeology of the Sandia Mtns	Stormwater/ Hydrogeology	Ciudad SWCD, TCWC organization members	25	Estimate
6/22/2023	Raymond G. Sanchez Community Center	Comprehensive Plan Community Update – North Valley and District 4	Comprehensive Plan community meeting, Staff offered general support for Q&A for environmental issues	Stormwater/ Water Conservation / Hydrogeology / Review & Permitting		40	Estimate
6/23/2023	Alvarado Square	Comprehensive Plan Community Update – Business Community	Comprehensive Plan community meeting, Staff offered general support for Q&A for environmental issues	Stormwater/ Water Conservation / Hydrogeology / Review & Permitting		40	Estimate
6/27/2023	Online	Comprehensive Plan Community Update - All areas Hybrid Meeting	Comprehensive Plan community meeting, Staff offered general support for Q&A for environmental issues	Stormwater/ Water Conservation / Hydrogeology / Review & Permitting		40	Estimate

OREALD City of albuquerque

City of Albuquerque Public Participation Numbers

The City of Albuquerque has provided the following in support of the MS4 permit in fiscal year 2023:

City of Albuquerque MS4 Training:

SWPPP: 148 employees SPCC: 184 employees

COA Parks and Open Space

Planting Numbers for this fiscal year Groups: 30 Estimated – 50 Classes that made up the groups RiverXChange Numbers for this year: Youth: 1,044 Pre-Lesson Students Served: 914 Classrooms: 45 Classrooms: 45 Adults: 271 Pole Planting Students Served: 886 Pole Planting Adults Served: 152 Pole Planting Trees: 482

Visitor Services Projects

(annual projects, Saturday volunteer days and scout groups) 156 youth and 567 adults = 723 Total hours = **3,615**

Visitor Center

Total Volunteers: 881 Total Volunteer hours = 6,069 (does not include cleanup)

NMDA Conference – 1,060 attendees

Materials distributed:

- 150 Reduce Pollution at Home Brochures/Rack Cards
- 100 Fog Brochures
- 150 New Pet Brochures
- 60 Poop Fairy Rack Cards
- 100 Oval Poop Stickers
- 100 KeeptheRioGrand Bumper Stickers
- 20 Old Version Scoop the Poop Bumper Stickers
- 50 Dogs w Poop bags
- 100 City of ABQ water drops
- 75 Poop Emoji Masks

STORMWATER QUALITY TEAM

COA Solid Waste Department

Community Volunteer Events

- Fixit Clinic 47 participants, 15 volunteers
- Company's Comin' 662 participants (13.5 tons of trash collected)
- One Albuquerque Cleanup Day 718 participants (18.02 tons of trash collected)
- Junk Jog 75 participants, 9 volunteers (4.74 tons of trash collected)
- HHW Collection Event 22,191 lbs. of HHW (and 4,691.66 lbs. of non-regulated solid waste) from 309 residents
- Treecycling 48.5 tons or 6,461 trees
- Recyclothes 4.2 tons of clothing collected

Social Media Outreach

(X, formerly Twitter)

178,434 impressions, 4,321 engagements

Facebook

126,786 impressions, 9,165 engagements

Instagram

124,871 impressions, 4,267 engagements

Planting Numbers for 2021–2022

Trees Planted

Date	School	Adults	Students	Trees	Date	Group	Adults	Students	Trees	
12.15.22	Bel Air	5	37	18	3.2.23	La Mesa	5	38	40	
12.16.22	Mission Avenue	3	31	25	3.3.23	La Mesa	4	33	44	
1.12.23	Zia	10	38	25	3.8.23	Holy Ghost 5th and 6th grades	3	33	17	
1.13.23	Puesta del Sol	3	32	8	3.9.23	Cochiti	15	35	43	
1.19.23	North Valley Academy	6	29	14	3.10.23	Lavaland/Monte Vista	5	37	41	
1.20.23	Puesta/North Valley	7	44	17	3.11.23	UNM/ Peace Corps	46	22	46	
1.24.23	Holy Ghost 5th and 6th grades	Cancelle resched			3.12.23	Jewish Community	15	8	14	
1.25.23	Puesta del Sol	4	39	16	3.14.23	John Baker Elementary	Cancelle	ed–to be res	chedule	
1.26.23	Seven Bar	6	41	16	3.16.23	Martin Luther Kink	4	58	35	
1.27.23	Seven Bar	4	28	12	3.17.23	Martin Luther Kink	Cancelle	ed–to be res	-to be reschedule	
2.2.23	San Antonio	12	48	13	3.29.23	Cottonwood Classic High	3	20	14	
2.3.23	John Baker	11	42	10	3.30.23	Holy Ghost 7th and 8th grades	2	32	100	
2.9.23	San Antonio/ Chaparral	11	51	11	3.31.23	John Baker Elementary	9	35	14	
2.10.23	Monte Vista	12	45	19	TOTALS	·	-	-	-	
2.11.23	UNM Peace Corps	23	4	29						
2.15.23	Holy Ghost 7th and 8th grades	Cancelle resched				os: 30 Estimated – 5 1,044, Adults 271	50 Classes	that made u	up the gr	
2.16.23	Valle Vista	5	40	25	Trees 754 (Cottonwood a Trees Remaining in trouc			Willow)		
2.17.23	Chaparral	10	51	16	RiverXChange Numbers Specifical			v:		
2.18.23	Sandia Civitans	18	4	38						
2.22.23	Cottonwood Classic High	Cancelle resched		·	Pole Planting Students Served: 886 Pole Planting Adults Served: 152					
2.23.23	Maggie Cordova Elementary	5	44	18		Planting Trees: 482				
		1	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1000	. There are the 2 to the		

Maggie Cordova Elementary

5

45

16

2.24.23

Total Waste Diverted

							the state of the state					FY	22 Total HHW	V (lbs) Diverte	d from Landfi			
								Recyc	ed Waste									
calendar Year	Month	Reuse Center	RC0014 Waste Oil	RC5056 Motor Fluids	RC0016 Lead Acid Batteries	RC6006 Mercury	ACT15687 Household Paint, xylene, tolulene etc	RC0011 Aerosols	RC7485 Alkaline Batteries	RC7486 Lithium Batteries	RC6254 NiCad Batteries	ACT46232 Compact Bulbs, CFL	ACT46233 HID Lamps	ACT46235 4 Foot Lamps	RC7658 8 Foot Lamps	ACT50491 Non PCB Ballast	ACT58121 Fire Extinguisher	ACT5824 Fertilize
	Jul	2,250		26,721	2,100	26		2,932	1,128			321		54		300		
	Aug	1,530		15,085				1,414	322		164	120		116	30			
	Sep	1,134		11,197				1,775	200	245	450	120		155	71			
	Oct	1,530		24,741				1,189	455			240		120	46		100	
51	Nov	1,290	180	12,866	2,000			1,980	1,100			180		62				
2021	Dec	798		11,210				550		300				40				
MID) YEAR	8,532	180	101,820	4,100	26	0	9,840	3,205	545	614	981	0	547	147	300	100	0
	Jan	1,128		7,680				550	300			120		20				
	Feb	1,206		9,150					300	250				64	31			
	Mar	1,866		18,340	1,200			2,500	800	500		100		41	25	250	200	
	Apr	2,250		16,530			1,630	1,200			275	100		59			250	
2022	May	2,472		19,465	480		550	1,550				260					180	
20	Jun	3,012		20,265			5,950	1,000								250	150	
τοτ,	AL (lbs)	20,466	180	193,250	5,780	26	8,130	16,640	4,605	1,295	889	1,561	0	731	203	800	880	0
Mis	sc = Cor	npact Bulbs	, 4 ft lamps, E	Ballast, PCB	Capacitors, (Carbides, Pho	osphides, Fertilia	zers, CO2 Cyli	nders, etc									
		то	TAL	345,540					PO Ar	nount:	\$1,000	,500.00	PO# DSW	/0016901				
		TOTAL Rec	cycled Waste	227,832					Paid A	mount:	\$954,	466.81	PO# DSW	/0022306				
		% Re	cycled	65.9%					Amount I	eft on PO:	\$46,0	033.19						

			Se	nt for Destruc	tion								
RC0012 Acids	RC0013 Bases	RC0015 Flamables Toxics Incenerated	RC6002 Toxic-Solid (Poisons)	RC7129 Compressed Gas	RC7182 Oxidizers	ACT145226 Pesticides Liquid Toxic	Misc*	TOTAL		Total Pounds Recycled	Tons Recycled	Total Destroyed	Amount Paid
1,119	2,407	137	1,209			2,261		42,965	July	35,832	17.92	3.57	\$105,924.00
1,646	10,985		930	362		1,547		34,251	August	18,781	9.39	7.74	\$91,903.31
1,985	860		816	180		1,414		20,602	September	15,347	7.67	2.63	\$86,831.00
2,858	8,838		600	100		3,904		44,721	October	28,421	14.21	8.15	\$85,161.75
3,160	7,190		710	110		1,700		32,528	November	19,658	9.83	6.44	\$72,841.00
1,260	1,230					2,400		17,788	December	12,898	6.45	2.45	\$59,653.00
12,028	31,510	137	4,265		0		0	192,855					
2,085	3,500					1,050		16,433	January	9,798	4.90	3.32	\$66,513.25
1,200	1,903		1,000	233		1,000		16,337	February	11,001	5.50	2.67	\$47,311.00
980	390		500	100		1,500		29,292	March	25,822	12.91	1.74	\$64,536.25
580	180		550			550		24,154	April	22,294	11.15	0.93	\$83,559.75
2,375	705		950			1,100		30,087	May	24,957	12.48	2.57	\$86,074.75
1,855	850		1,100			1,950		36,382	June	30,627	15.31	2.88	\$104,157.75
21,103	39,038	137	8,365		0		0	345,540		255,436	127.72	34.32	\$954,466.81

City of Albuquerque and Bernalillo County: Public Participation Numbers

				Household H	azardous Was	te Collecti	on Participation				
					July 2021-	June 2022					
Month	Participants w/Unknown Location or Not Enough Info to Geocode	Total	Orphaned waste at facility	City Participants (City + No Match or Not Enough Info)	County Participants	Out of County	Out of County Breakdown	County Percentage	Monthly Cost	Light Bulbs (add on to monthly cost)	Total Cummulative Cost
Jul-22	141	1465	0	1271	191	3	3-Sandoval County	13.0%	\$95,225.00	\$2,146.75	\$97,371.75
Aug-22	128	1344	0	1162	178	4	4-Sandoval County	13.2%	\$87,360.00	\$2,537.75	\$89,897.75
Sep-22	136	1248	0	1083	163	2	2-Sandoval County	13.1%	\$81,120.00	\$891.50	\$82,011.50
Oct-22	143	1101	0	954	146	1	1-Sandoval County	13.3%	\$71,565.00	\$2,788.75	\$74,353.75
Nov-22	90	865	0	751	110	4	4-Sandoval County	12.7%	\$56,225.00	\$503.25	\$56,728.25
Dec-22	115	820	0	705	115	0	-	14.0%	\$53,300.00	\$1,469.50	\$54,769.50
Jul-Dec 2022	753	6843	0	5,926	903	14		13.2%	\$444,795.00	\$10,337.50	\$455,132.50
Jan-23	76	833	0	710	121	2	2-Sandoval County	14.5%	\$54,145.00	\$1,065	\$55,210.00
Feb-23	169	718	0	624	94	0	-	13.1%	\$46,670.00	\$1,475	\$48,145.25
Mar-23	288	1014	0	913	101	0	-	10.0%	\$65,910.00	\$6,000	\$71,910.00
Apr-23	378	1232	0	1115	117	0	-	9.5%	\$80,080.00	\$1,286	\$81,366.00
May-23	404	1359	0	1223	136	0	-	10.0%	\$88,335.00	\$1,158	\$89,492.75
Jun-23	476	1532	0	1,371	161	0	-	10.5%	\$99,580.00	\$1,446	\$101,026.00
Jan-Jun 2023	1,791	6,688	0	5,956	730	2		10.9%	\$434,720.00	\$12,430	\$447,150.00
FY23 Total	2,544	13,531	0	11,882	1,633	16		12.1%	\$879,515.00	\$22,768	\$902,282.50
				Participant To	tal (other than o	rphaned)	13,531			\$22,768	
Monthly Average	1128							Participants	Percentage	Cost	
						BERNCO	O Participation to date	1,633	12.1%	\$106,145	
Participant Fee		\$ 65.00									
		¢ 1.000.000.00					t Enough Info to Geocode	2,544	18.80%	\$165,360	
Y23 Budget Remaining Bala	nce	\$ 1,000,000.00 \$ 97,717.50			(CO	sts absorbed	by COA)				

All information in this report comes from ACT—Nichole Gwash (NGwash@ACTEnviro.com) by email. She will send an invoice, a list of residents (which must then be sent to Ben Sanborn for geocoding), a list of items processed, and any logs for drums and light bulbs & tubes.

Silt/Trash/Debris/Vegetation Removed from Arroyos & Catch Basins

erro Colorado	Landfill																	
2022 ►	July	August	September	October	November	December	2023 ►	January	February	March	April	May	June					
	Trips	Trips	Trips	Trips	Trips	Trips		Trips	Trips	Trips	Trips	Trips	Trips		Trips		Qty.	
Tandem	13	7	15	7	6	7		9	4	26	14	8	16	TOTAL	132		1,320.0	cubic yards
Bobtail	0	15	1	0	0	0		0	0	4	5	0	2	TOTAL	27		162.0	cubic yards
																TOTAL	1,482.0	cubic yards
TOTALS	13	22	16	7	6	7		9	4	30	19	8	18	TOTAL	159			
												One (1)	Tandem Loa	ad is approx	kimated	to equal:	9.0	cubic yards
												One (*	I) Bobtail Loa	ad is approx	kimated	to equal:		cubic yards
outhwest Lan	dfill																	
2022 ►	July	August	September	October	November	December	2023 ►	January	February	March	April	Мау	June					
	Trips	Trips	Trips	Trips	Trips	Trips		Trips	Trips	Trips	Trips	Trips	Trips		Trips		Qty.	
Tandem	0	0	0	0	0	0		0	0	0	0	0	0	TOTAL	0		0.0	cubic yards
Bobtail	0	0	0	0	0	0		0	0	0	0	0	0	TOTAL	0		0.0	cubic yards
																TOTAL	0.0	cubic yards
TOTALS	0	0	0	0	0	0		0	0	0	0	0	0	TOTAL	0			
												TOTA	L For Fiscal	rear 2023	Both L	andfills:	1,482.0	cubic yard
												FY	2022 Cubic	Yardage T	otals R	eported:	3 712 0	cubic yard
															- Julo IX	-pontou.	3,7 12.0	cable yalu

City of Albuquerque Department of Municipal Development Street Maintenance Division * Began New Data Entry As Of CY2012 Report Fiscal Year 2023 Data Entered has been acquired from Supervisors' Section Spreadsheets which are based on Landfill Ticket Data Reporting Section Reporting Section Reporting Section Reporting Section City East Side Sweeping City West Side Sweeping **City Trouble Shooters** Reported In Reporting *Storms & Arroyos Sections Calendar Year Month Tons Cubic Yards Tons Cubic Yards Tons Cubic Yards Cubic Yards Tons 94.23 2022 July 297.65 240.00 242.29 260.00 11.65 52.00 130.00 2022 177.61 286.41 270.00 17.51 98.28 160.00 August 180.00 58.00 161.12 167.63 200.00 24.52 2022 September 170.00 52.00 150.56 156.00 2022 October 209.20 220.00 168.18 190.00 9.89 63.02 70.00 48.00 2022 November 160.19 240.00 191.58 270.00 35.97 46.00 21.45 60.00 2022 264.59 370.00 223.55 330.00 20.80 50.00 45.68 70.00 December 2023 160.47 200.00 306.71 330.00 78.99 94.00 72.32 90.00 January 2023 150.00 190.00 40.00 February 180.00 121.94 6.39 70.00 9.22 2023 228.56 230.00 223.69 250.00 282.40 March 20.81 60.00 284.00 2023 184.11 200.00 153.66 210.00 4.83 36.00 113.84 170.00 April 2023 196.56 250.00 176.50 230.00 10.73 58.00 94.48 80.00 May 2023 204.82 220.00 103.76 156.00 34.68 98.00 94.72 172.00 June City East Side Sweeping City West Side Sweeping **City Trouble Shooters** *Storms & Arroyos Sections Tons Cubic Yards Tons Cubic Yards Tons Cubic Yards Tons Cubic Yards Section's Totals For FY2023 ► 2,394.88 2,700.00 2,365.90 2.886.00 276.77 722.00 1,140.20 1,482.00 \$71,846.40 \$8,338.50 \$34,206.00 \$70,977.00 Cost Paid Per Total Paid COA / DMD / SMD Trouble Shooters & East & West Side Sweeper Section's FY-2023 Ton Combined Total Tons Reported for Fiscal Year 2023: 5.037.55 Tons \$30.00 \$151,126.50 COA / DMD / SMD Trouble Shooters & East & West Side Sweeper Section's Combined Total Cubic Yards Reported for Fiscal Year 2023: 6.308.00 Cubic Yards Cost Paid Per Total Paid COA / DMD / SMD Storm & Arroyo Maintenance Section's FY-2023 Ton Combined Total Tons Reported for Fiscal Year 2023: 1,140.20 Tons \$30.00 \$34,206.00 COA / DMD / SMD Storm & Arroyo Maintenance Section's Combined Total Cubic Yards Reported for Fiscal Year 2023: 1.482.00 Cubic Yards Cost Paid Per Total Paid All Four Reporting Sections Ton FY-2023 Combined Total Tons Reported for Fiscal Year 2023: 6,177.75 Tons \$30.00 \$185,332.50 All Four Reporting Sections Combined Total Cubic Yards Reported for Fiscal Year 2023: 7,790.00 Cubic Yards

ACT Environmental Services 208 Murray Road SE Albuquerque, NM 87105 (505) 445-9400 ext. 410 Office E-mail: <u>mthornton@ACTEnviro.com</u>

HHW Chemical Waste Inventory:

Project Name:	Albuquerque/Bernalillo County Household Hazardous Waste Collection Event 5000 Balloon Fiesta Parkway Albuquerque, NM 87113
Job Date:	November 13, 2021
Client:	City of Albuquerque/Bernalillo County
Report Date:	January 25, 2022
Author:	Melanie Thornton / Martin Aranda
Site Contact(s):	Jake Daugherty

On November 13, 2021, ACT Environmental Services, and the City of Albuquerque/Bernalillo County, in a joint effort collected, segregated, packaged, labeled, transported, and disposed of 48,373 pounds of Household Hazardous Waste, and 10,380 pounds of Non-Regulated Solid Waste from 585 residents from residents within the Albuquerque/Bernalillo County at an average of 100.43 pounds of waste per customer.

This work was performed per the Scope of Work given to ACT by the City of Albuquerque/Bernalillo County. A copy of each HHW Chemical Waste Manifest/Bill of Ladings was provided to the City Representative at the time of collection.

Is there info. for this page, or is it eliminated?

Is there info. for this page, or is it eliminated?

DOT Hazard Class	Subsidiary Risk	Types of Chemicals	Total Gross Weight	Number of Drums X Size of Drums	Treatment Technology
Non-Haz		Used motor oil & Antifreeze	8,262 lbs.	4 X 275 Portable Totes	Recycle
Non- RCRA/Non-DOT Regulated Material Solid		Solid waste, empty containers, trash	10,380 lbs.	4 X 40 Yard Bins	Landfill
Non- RCRA/Non-DOT Regulated Material Liquid		Latex Paint	27,280 lbs.	1 X 20 Yard Bin 1 x 30 Yard Bin	Landfill
2.1 – Flammable Gas		Aerosol Spray Cans	1,686 lbs.	3 X 275 Cubic Yard Box	Energy Recovery / Fuel Blending
3 – Flammable Liquid		Paint Related Material	3,511 lbs.	10 X 55 Gallon Metal Drum	Energy Recovery / Fuel Blending
3 – Flammable/Toxic Liquid	6.1 - Toxic	Captan, Diazinon	2,887 lbs.	16 X 55 Gallon Poly Drum	Energy Recovery / Fuel Blending
5.1 – Oxidizing Solids		Potassium Nitrate/Sodium Hypochlorite	12 lbs.	1 X 05 Gallon Poly Drum	Incineration
6.1 – Toxic Solid		Captan, Diazinon	944 lbs.	6 X 55 Gallon Poly Drum	Energy Recovery/Fuel Blending
8 – Corrosive (Acids)		Hydrochloric Acid, Sulfuric Acid	342 lbs.	2 X 55 Gallon Poly Drum	Stabilization / Landfill
8 – Corrosive (Basic)		Sodium Hydroxide, Potassium Hydroxide	1,491 lbs.	8 X 55 Gallon Poly Drum	Stabilization / Landfill
8 – Corrosive (Batteries)		Automotive Lead Batteries, NiCad, Lithium Ion, Alkaline	1,340 lbs.	1 x Wooden Pallet, 2 x 30 Gallon Poly Drum, 5 x 5 Gallon Poly Drums	Recycle
8 – Mercury		Mercury	5 lbs.	1 X 5 Gallon Poly Drum	Recycle
9 – Environmentally Hazardous		Fluorescent Light Bulbs	613 lbs.	9 x Cylinder Box & 1 x 55 Gallon Poly Drum	Recycle

Albuquerque/Bernalillo County Household Hazardous Waste Collection Event at Balloon Fiesta Park

Treatment Technology	Weight
Recycle	10,220 lbs.
Energy Recovery / Fuel Blending	9,028 lbs.
Incineration	12 lbs.
Landfill	39,493 lbs.

Is there info. for this page, or is it eliminated?

Waste Total	Cost	Cost/lbs.
58,753 lbs.	\$40,663.75	\$1.44/lbs.

585 - Albuquerque/Bernalillo County Participants

We are committed to working with you in fulfilling the environmental needs of our communities.

Melanie Thornton ACTEnviro Office Manager - ABQ

2022 Foothills Spring Cleanup Results (1 of 2)

Location	Volunteers	Dog Poop (in Lbs.)	Trash (bags)	Trash * (cubic yards)	Mixed Recycling (bags)	Glass (5 gal buckets)	Aluminum (bags)	New Trail Built (miles)	Trail maintained (miles)	Notes:
Rt 66	29			14.5	6	4	2	0.1		Large items included numerous tires and a matress, 2 trail crews completed the a
										reroute
Copper	51	40	5	0.9	1	1	0.33		0.5	4 trail crews did maintenance on .5 miles of trail. One cactus crew closed off several social trails
Indian School	43	25	1	0.2	1	0.5	0		0.45	4 trail crews did maintenance on about .45 miles of trail. Two cactus crews
										planted hundreds of cactus cuttings to block social trails.
Menaul	55	35	3	0.5	1	2.5	1		0.4	four trail crews did maintenance on about .4 miles of trail. Three cactus planting
										crews planted hundreds of cuttings to block off social trails
Piedra Lisa	39	25	0.5	0.1	0.5	2	0.5		0.25	1 trail crew built 27 drain dips on .25 miles of trail. 2 rock crews built steps on the
										Canyon Trail, 1 cactus planting crew planted hundreds of cactus cuttings on a variety of short cuts, and 1 graffiti crew scrubbed graffiti off a rock outcrop.
Embudito	31	20	1	0.2	1	0.33	0.25		0.2	1 trail crew built 20 drain dips and did general maintenance on .2 miles of trail, 1
	*tr	ash bags conv	verted to c	ubic vards a	nd added to	cubic vard t	total			rock crew reinforced several rock ramps on Trail 365, and 2 Cactus planting crews planted hundreds of cactus cuttings on several social trails adding up to .15 miles of trail closure.
2022 River Cleanup							lotur			
	102			15	10	6	2			Filled a dump trailer, plus 4 pickup trucks. Large items: 12 tires, 5 shopping
2022 National Trails	Dav									carts, and a vinyl kiddie pool
	100							0.04	1.4	4 crews planted cactus on short cuts and social trails
										6 crews did maintenance on approximately 1.4 miles of trail
										2 crews built rock retaining walls
										1 crew built a trail reroute (about 190 feet) to replace several social trails
										several volunteers cleaning up dog poop and trash

Is there info. for this page, or is it eliminated?

city of albuquerque

Outcomes Report Fiscal Year July 1, 2022 to June 30, 2023 • Presented by SUNNY505 17

2022 Foothills Spring Cleanup Results (2 of 2)

	Volunteers	Dog Poop (in Lbs.)	Trash (bags)	Trash (cubic yards)	Mixed Recycling (bags)	Glass (5 gal buckets)	Aluminum (bags)	New Trail Built (miles)	Trail maintained (miles)
Totals	450	145	10.5	31.4	20.5	16.33	6.08	0.14	3.2
Dia del Rio									
Make a Diff Day									
Grand Total	652	145	10.5		30.5	22.33	8.08		

city of albuquerque

Is there info. for this page, or is it eliminated?

Poop Fairy Signs

During FY22 we distributed 276 Poop Fairy signs to local residents. We also gave 250 to Parks and Open Space for posting.

Is there info. for this page, or is it eliminated?

Mid Rio Grande Stormwater Quality Team

In fiscal year 2023, the Stormwater Quality Team attended the annual Corrales Harvest Festival, a rural community just north of Albuquerque, the Doggie Dash and Dawdle, an event that fundraises on behalf of the local Animal Humane.

Additionally, the group attended a number of community events in Albuquerque's South Valley and West Side. During each event educational rack cards and various promotional products were distributed.

The team also produced a Spanish section of the KeepTheRioGrand.com website.

And finally, the team created custom content and posts on Facebook.

eep the Rio Grand

s 🙆 · June 25 · 😭

Village of Corrales

The Village of Corrales has no municipal storm sewer system. To handle stormwater flows from development, engineered grading and drainage (G & D) plans are required prior to any residential construction that will disturb more than 1,000 square feet. Engineers may design berms, swales, retention ponds and other aspects to keep new impervious surface (roofed or paved) stormwater flows on the subject property and not running into streets or adjacent properties.

Within the Commercial zone, stormwater retention areas must be built into Site Development Plan drawings before those applications can be heard by the Planning and Zoning Commission.

In FY23, the Village saw 21 residential grading and drainage plans prior to issuing building permits. There were four Commercial Site Plans that incorporated drainage (primarily retention ponding) into their designs. One was the Village of Corrales administration complex, which added a new swale on the north side of the property along with the two existing retention areas.

This fiscal year, the Corrales Bosque Advisory Commission in conjunction with the Corrales Fire Department continued their efforts to encourage dog waste pick-up along popular pedestrian areas into the Bosque and elsewhere in the Village. There are nine waste bag stations and trash receptacles located at Bosque access gates, Camino de la Tierra (entrance to popular Sand Dunes walking area) and at Quirks Lane. CBAC provided approximately 8,500 dog poop bags in/near the Bosque, and an additional 500 bags at the other location, greatly reducing the amount of dog waste otherwise in danger of polluting the acequias, canals or Rio Grande.

The glass recycling area continues to be amazingly successful. From April of 2022 through August 14, 2023, the Village has recycled 93.63 TONS of glass.

The Village is continuing the twice-a-year (spring and fall) community "Clean-Up" days, accepting non-hazardous and yard waste. Approximately 200 households per year participate. Our Code Enforcement Officer works with citizens throughout the year to have them remove trash, non-functional vehicles and other items that could leak fluids into the groundwater. There is no municipal water system; all structures are serviced by wells.

Every year during the Corrales Harvest Festival, which is attended by folks from throughout the metro, a Stormwater Team booth educates the public on the importance of keeping waste, oils, floatables and other items out of the river.

This year it was reported to the Village that a vehicle had leaked a significant amount of fluid along a public rightof-way, Tierra Encantada. Public Works used absorbents to clean up as much as possible.

Rio Rancho?

Is there info. for this page, or is it eliminated?

Ciudad Soil & Water Conservation District Non RX Stormwater Presentations 2022

Date	Times	RR or ES	Event	Presenter(s)	Visitors
4.23.2022	9:00am–12:00pm	RR	RiverXchange Community Day	Erin, Steve, Salema	10
6.4.2022	9:00am–12:00pm	RR	BernCo Master Naturalist Presentation	Steve, Erin	25
6.11.2022	9:00am–12:00pm	RR	GHH	BernCo OSD	12
6.13.2022	9:00am–12:00pm	RR	Shady Lakes	Erin, Steve, Jaren (Nature Niños)	45
6.18.2022	9:00am–12:00pm	RR	Phil Chacon Park	COA OSD – Nature in Your Neighborhood	did not attend
6.13.2022	10:00am–1:00pm	RR	Shady Lakes: Nature Niños Summer Camp	Steve, Jaren, Saleema (Nature Niños)	40
6.23&25.2022	6:00–7:30pm 9:00–11:00am		Residential Rainwater Harvesting 2.0 (Online & In-person at GHH)	Jim	45
6.30.2022	10:00am–1:00pm	RR	Shady Lakes: Nature Niños Summer Camp	Steve, Jaren, Saleema	75
7.16.2022	9:00am–12:00pm	RR	Alamosa Community Center	Erin, Steve (COA OSD – Nature in Your Neighborhood)	35
7.25.2022	10:00am–1:00pm	RR	Shady Lakes: Nature Niños Summer Camp	Erin, Steve	75
7.30.2022	9:00am–2:00pm	RR	Isleta Environmental Fair	Steve Glass, Tom Allen Jaren Peplinski	75
8.22 & 24.2022	10:00am–2:00pm & 9:00am– 11:00pm	RR	UNM Welcome Back Days	Kolt, Thomas, Steve, Erin	100
8.27.2022	9:00am–12:00pm	ES	TBD	COA OSD- Nature in Your Neighborhood	
8.27.2022	9:00am–1:00pm	RR	Santa Ana Environmental Fair	Jaren, Theresa	
9.24.2022	9:00am–12:00pm	RR	TBD	Erin, Steve (COA OSD – Nature in Your Neighborhood)	

3rd Quarter Report 2022-2023 January- March

Submitted by: Education Manager Erin Blaz

The RiverXchange Team: Erin Blaz, Theresa Aragon, Astrid Mooney

Participating Schools:

FUNDER	MRGSQT		SSCAFCA	
	SCHOOL - Number of classes	Number of Students	SCHOOL - Number of classes	Number of Students
Title 1	La Mesa - 4	58	MLK* - 4	113
school	Valle Vista* - 2	43	Maggie Cordova* - 4	100
	Seven Bar* - 3	45		
	John Baker- 2	41		
	Zia*- 2	40	OUTDOOR EQUITY FUND	
	Monte Vista - 3	48	Puesta del Sol* - 5	105
	Cochiti* - 2	47		
	North Valley Academy - 3	50		
	Mission Ave*- 2	54		
	Bel-Air* - 2	46		
	Lavaland* - 1	20		
	San Antonito - 3	71		
	Chaparral* - 3	87		
TOTALS	32	650	13	318
RX Total Classes	45	RX Total Students	968	

Summary:

3rd Quarter: January- March are typically very active months for RiverXchange participants and staff. Pole planting with CABQ OSD occurs weekly, presentations are in full swing and this year, teachers were provided with a six week-long action project support campaign via weekly emails that contained summaries of each stage of the Earth Force process and resources. Theresa Aragon also developed and taught a new Agriculture lesson for APS classes since RiverXchange still has not found a partner with the capacity to serve the number of APS classes enrolled. The lesson focused on food waste, virtual water, and water conservation and was very much enjoyed by the classes. By the end of March, all but 2 RRPS classes had completed all the field trips. These field trips are rescheduled for May in partnership with Talking Talons Youth Leadership EPA field trips at the Tijeras Bio-Zone Education Center, along with Backyard Refuge and includes a stewardship component to help restore the Tijeras Creek riparian zone.

Mid-year: The 2nd quarter activities focused on scheduling and confirming presentations and the field trips; tracking presentations and scheduling reminder emails; and organizing the Earth Force *environmental action civics* process into an online classroom format on Canvas for teachers

RiverXchange® remains focused on building meaningful watershed experiences for New Mexico students this year and has returned to a fully in person program for 2022-2023.

The agreement with the Middle Rio Grande Stormwater Quality Team (MRGSQT), including the contributions from Southern Sandoval County Arroyo Flood Control Authority (SSCAFCA), provides funding for 38 classes this year. At the suggestion by SSCAFCA, Ciudad Soil and Water Conservation District (SWCD) applied for additional funds to support RiverXchange this year through the Outdoor Equity Fund Grant, and Ciudad SWCD was

25

Mid-year: Staff are working on guidance and criteria for awards to be released in January.

Task 12: Collect and analyze teacher feedback.

Complete by May 2023. Status: approaching

Staff will revise the teacher feedback form and offer it to teachers by the end of April.

Task 13: Create, print and mail thank you cards to in-kind partners and certificates of recognition to teachers.

Complete during June 2023. Status: approaching

We will maintain correspondence with our in-kind partners throughout the school year and send thank you notes as needed.

Task 14: Reporting to sponsors.

3rd quarter report by April 2023. Final report by June 2023.

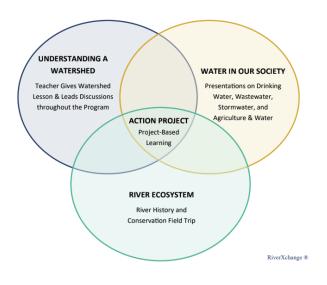
Additionally, the Outdoor Equity Grant experienced some hold-ups in the procedure around securing the agreement for the grant, so one school - Puesta del Sol, only came on just at the end of September once we were able to confirm the grant. Around late September most schools had fully confirmed their participating classrooms in RiverXchange, with two schools confirming classes that still did not have a teacher. The other teachers at these schools desired for those students to participate in the program and offered to support those classes until they were assigned a teacher.

Of the 16 schools participating this year, 6 are completely new schools to RiverXchange -Bel Air, Mission Ave., Lavaland, San Antonito, Chaparral and Puesta del Sol.

Task 2: Review and revise curriculum.

Complete by September 2022. Status: completed.

RiverXchange staff are proud of this program's continued ability to meet the unique needs of 5th grade teachers in our region. Many elementary teachers suggest that they are the least comfortable teaching science subjects and others reflect that the district purchased science curriculum doesn't provide the same quality of experiences as RiverXchange. One of our most long-standing RiverX change teachers shared with us that their school consistently scored higher than average on science testing scores and accounts that to their participation in RiverXchange.


This year the RiverXchange website was significantly updated in effort to improve participating teachers familiarity with, understanding of, and successful use of the RiverXchange curriculum, which is unlike many standard curricula as it blends outside presenters and field experiences with project-based learning. The RiverXchange website now reflects how the curriculum is broken down into 3 areas of study (and the comparative activities and associated leaders of those activities): Understanding a Watershed (Teacher-led, ensures the foundation of

understanding a watershed with a Shower Curtain Watershed lesson or similar activity), Water in Our Society (Presentations with various agencies and presenters) and The River Ecosystem (Pre-lesson and field trip hosted by City of Albuquerque Open Space). These study areas have been defined in RiverXchange for many years through the Big Water Questions, which are suggested reflection prompts for students throughout the program. Using these three areas of study proved to be helpful in introducing RiverXchange to new teachers and refreshing experienced ones.

Most importantly, linking these 3 areas of study together is the Action Project. Using Project-based learning as a means to support student engagement in meaningful action in their watershed, the Action Project is a critical element of the RiverXchange curriculum. In its second year of delivery, previously called the capstone project, The Action Project aims to become a significant professional development opportunity for teachers as a means to deliver high quality STEM and civic engagement through project-based learning in their classroom. Students will benefit from the Action Project by acquiring a multitude of skills that are required to take meaningful action for watershed health. From interviewing stakeholders, collecting data, researching history, policy and practices around an issue, to reporting on and advocating for change through action, the Action Project will build on the core content of RiverXchange and help students understand what it takes to inspire, demand or be a leader for effective change.

Task 3: Set teacher workshop dates and locations, review training agenda, order curriculum materials, and conduct workshops.

Complete by October 2022. Status: completed.

Two teacher workshops were held this year on September 23 and September 30 at the Open Space Visitor Center, with a total of 31 teachers in attendance. Teachers from Chaparral, San

Antonito and Puesta del Sol were unable to attend due to late registration to the program, however staff met with these teachers outside of the workshop to train them on the program and schedule their presentations.

This year's workshops featured BEMP educators Laura Pages and Annie Montes, who facilitated an activity called "Dabbling in Data." In this activity, groundwater table data is recorded on graphs for multiple years to see seasonal trends and observe periods of drought or heavier than normal snowmelt or precipitation as a means to discuss the relationship between weather patterns, groundwater and ecosystem health. Highlighting BEMP as a collaborative partner with Ciudad SWCD and RiverXchange was helpful for teachers to see how our program fits into the larger landscape of watershed education in our community and how students will eventually build on RiverXchange in future outdoor and environmental education experiences.

The workshop also focused on the framework for The Action Project with teachers, with discussion in small groups on how to implement the project in the classroom. Reflections from that discussion was shared in the larger group, and while feedback was positive and enthusiastic,

it demonstrated the need for even more clear and direct guidance on the framework, which was helpful for staff to understand so we can find a way to meet that need.

Task 4: Review Action Project format and reporting system.

Goal: Complete by September 2022. Status: in process

3rd quarter: With around half of the teachers present on the CANVAS platform to explore and utilize the Earth Force process, it was decided to do a six week email campaign to encourage teacher participation in the Action Project, continuing to use the Earth Force process as the guide. These emails also served as a reminder for the deadline to submit summaries of the action projects, along with guiding questions for submissions, and the award prizes (pizza party gift certificates for the first 10 classes to submit). Submissions were due March 17 before spring break and 10 teachers submitted videos or recordings of their students answering questions about their projects.

Mid-year: In October, Erin Blaz attended the North American Association of Environmental Education's national conference in Tucson, AZ. At this conference, Ms. Blaz was introduced to Earth Force and their "Environmental Action Civics" process. This process is a fully developed framework for completing an action project and aligns with the RiverXchange Action Project Framework that was in development on our end. Earth Force freely shares its process for educational purposes and the integration of this process into RiverXchange has been discussed with their team. While our original framework for the Action Project included 5 steps and guiding questions, the Earth Force process has 6 steps with adjoining lesson plans, videos, activity templates, and helpful tips for each step. An overview of the Earth Force Resources can be found here.

The project reporting system is in development. We are using a free online learning management system called Canvas to post the Earth Force Learning Process, much like an online class for teachers to follow and implement the process. Canvas allows teachers to upload content such as media files, which we are hoping to obtain for the Children's Radio Hour show which will feature RiverXchange classes for their Earth Day segment.

Task 5: Review, update and distribute pre-survey to all classes before presentations begin and track completion.

Begin August 2022. On-going through Dec 2023. Status: completed.

This year's survey was updated slightly with a change to the possible answers being narrowed to mostly True, False or I haven't learned this yet. Rather than allowing students to only show a scaled response that either shows correct or incorrect knowledge, we are attempting to offer "I haven't learned this yet" as a strategy to show authentic learning in post-survey.

The Pre-Survey can be viewed from : <u>www.riverxchange.com/Survey</u>

Task 6: Monitor, coordinate and provide support to teachers for Action Projects.

Begin December 2022. On-going through May 2023. Status: approaching.

3rd Quarter: As stated above, a six week email campaign was delivered to all teachers; each week focused on one of the six stages of the Earth Force process with supporting resources. As the Earth Force process is new to RiverXchange, we wanted to present the resources in a few different ways to increase access, while also being cautious of overwhelming teachers with emails and information. Additionally, RiverXchange staff meet with Earth Force representatives to discuss best practices for delivering Earth Force and getting action project reports or

summaries by students and teachers. RiverXchange staff was also invited to participate in the Earth Force Train the Trainer program in June, which offers a \$500 stipend for participation and demonstration of Earth Force implementation.

Mid year: Staff is making every effort to ensure teachers have easy access to the Earth Force materials as guidance for the Action Project. On November 30, staff hosted an Action Project Discussion on Zoom to review the Earth Force process, orient teachers to the Canvas classroom and show how to upload recordings of students reporting on their projects. Sixteen teachers attended this discussion and 19 teachers have joined the Canvas classroom.

Task 7: Coordinate field trips.

Begin September 2022. On-going through May 2023. Status: in process.

Field trip coordination is in progress with our main point person, Ellie Althoff, from CABQ-OSD. Ellie will continue to offer a field trip pre-lesson this year, focused on the River of Change from the Bosque Education Guide. Ellie is coordinating the field trips so that she will offer the pre-lesson the same week as the pole planting field trip. This is an exciting addition to the program as students will be taking immediate action by pole planting native trees after they learn about the impacts of flood control measures on the Bosque and riparian ecosystem of the Rio Grande. Field trips will begin in December and run through March on Thursdays and Fridays.

3rd Quarter: This year the pole planting took place in two locations. For January and February we planted at the Shining River Open Space, just south of Paseo del Norte on the east side of the

Rio Grande. For March we moved to Gabaldon, just north of the 1-40 and east of the river. This location change was unique, and reflected new staffing at CABQ-OSD, however the desire to ensure a positive experience for everyone was consistent with prior years. The Shining River planting location was extremely challenging for students, adults and staff. The holes were extremely sandy, which meant they were hard to dig out with the hand augers and collapsed often. Most students struggled to get one tree in over the course of the field trip. Although it was challenging, it was possibly even more rewarding once they finished that one, hard-earned tree. Classes that planted in March still voiced an equal number of complaints over the hard work, even though they were able to get up to 4 trees in the ground per group! It goes to show that it is less about the number of trees they get and more about teaching perseverance with the students. It was also noticeable that many classes came to the pole planting with increased understanding of the flood control and management strategies that impact the Bosque ecosystem which informed why they were there, due to the pre-field trip lesson with CABQ-OSD.

Mid-year: Two field trips took place in December in the Bosque off of Paseo del Norte and Rio Grande. 68 students attended and 43 cottonwoods were planted. This site has been confirmed for January plantings, but Open Space is still evaluating the best location for Feb and March plantings. This is unique as most years OSD confirms all pole planting locations at once. Bus costs have increased significantly and staff is working on finding the best vendors to service the field trips.

Task 8: Coordinate classroom guest speakers.

Begin September 2022. On-going through May 2023. Status: in process.

With the program moving to in-person presentations this year, coordinating and getting presenters back on board took a little extra effort as some had not presented for the last two years as they offered a video recording of the presentation instead (i.e. Rio Rancho Utilities, Sandia Labs). Additionally, both APS and RRPS required different levels of background checks. Ample notice was given to those presenters in order to complete those requirements.

APS

Drinking Water and Wastewater Presenters - Ellie Garcia & Rhea Trotman from ABCWUA Stormwater - Sandia Labs, Leads- John Kay and Nora Wintermute and other various presenters. Agriculture- Still TBD, BernCo Coop Ext can not serve the 32 classes. We are working to find a solution, as this continues to be a challenging presentation to fill in Albuquerque. Field Trips and Pre-Lesson, Ellie Althoff and Kyle Bality of CABQ-OSD

RRPS

Drinking Water and Wastewater Presenters - Ellie Garcia. ABCWUA educators generously offered to cover RRPS this year, as the CoRR Utility dept was not yet ready due to new staff and capacity issues.

Stormwater - John Stomp and Andy Edmondson at SSCAFCA Agriculture- Steve Lucero and Rachel Zweig, Sandoval County Coop Ext. Field Trips and Pre-Lesson, Ellie Althoff and Kyle Bality of CABQ-OSD

3rd quarter: As is common with such a busy time of presentations, coordination of reschedules between presenters and classes probably happens the most during the 3rd quarter. Theresa Aragon managed these communications smoothly, while also designing a new agriculture + water lesson and teaching it to every APS class in RiverXchange. This was possible due to field

trip leader funds that weren't utilized now that all pole planting field trips are for two classes at a time, rather than some being for one class only, which reduces the number of total field trips.

Mid-year: All presentations, except Agriculture for APS have been scheduled and confirmed with presenters and classrooms. RiverXchange staff are exploring options to present the Agriculture themselves, as it may be more efficient time and budget wise than seeking new partnerships with little time left to schedule.

Task 9: Review and track Action Project progress

Begin December 2022. On-going through May 2023. Status: in process.

3rd quarter: While the initial CANVAS participation by teachers in the 2nd quarter was encouraging, staff have only had one teacher upload any action project recording information on this platform. With Theresa visiting many classes in APS for the Agriculture Presentation and supporting the Pre-Lesson in RRPS, she was able to talk to teachers directly to encourage submissions and take videos herself to submit to the Children's Radio Hour. We were able to gather videos and voice recordings from 10 classes. This is definitely an area that needs evaluation and improvement, as it is difficult to retrieve details about each classroom's project as we are not really there to capture their work.

Mid-year: Staff have shared with teachers the importance of documenting the action projects along the process and have designated a place to upload recordings, documents or pictures to the Canvas classroom. The Canvas platform became accessible to teachers at the end of November and with December being a busy month, we expect to see more to report on in the 3rd quarter.

Task 10: Distribute post-survey to classes after they complete presentations and field trip, complete metrics evaluation and review.

Begin February 2023. On-going through April 2023. Status: approaching.

3rd quarter: A few classes have completed their presentations and post-surveys are being distributed.

Task 11: Review Action Projects for RiverXchange Excellence and award winners. April 2023. Status: approaching.

3rd quarter: This year, in collaboration with the Children's Radio Hour, we are featuring students discussing their Action Projects on the Earth Day show in April. Our initial intention was to incentivize the classes with a feature on the Children's Radio Hour as an award for teachers to submit their projects. However, as a result of few audio and video submissions received, we separated the pizza party awards and radio feature to boost overall project submissions by the deadline. In addition to the awards incentive, teachers were given the opportunity to submit their progress gradually and were encouraged to seek assistance from RiverXchange staff throughout each step of the Earth Force process. The weekly Earth Force email campaign was key in reinvigorating participation in sharing class's Action Projects and delivering specific criteria to the teachers with the flexibility of incorporating their own process.

While presentations in the classroom began, students started making connections to the big water questions and how it relates to problems they were noticing in their own community. Many students jumped into action and started brainstorming their Action Projects by interviewing staff and students about the environmental issues they are trying to solve.

Mid-year: Staff are working on guidance and criteria for awards to be released in January.

Task 12: Collect and analyze teacher feedback.

Complete by May 2023. Status: approaching

Staff will revise the teacher feedback form and offer it to teachers by the end of April.

Task 13: Create, print and mail thank you cards to in-kind partners and certificates of recognition to teachers.

Complete during June 2023. Status: approaching

We will maintain correspondence with our in-kind partners throughout the school year and send thank you notes as needed.

Task 14: Reporting to sponsors.

3rd quarter report by April 2023. Final report by June 2023.

Mid-year Report 2022-2023 October-December

Submitted by: Education Manager Erin Blaz

The RiverXchange Team: Erin Blaz, Theresa Aragon, Astrid Mooney

Participating Schools:

FUNDER	MRGSQT		SSCAFCA	
	SCHOOL - Number of classes	Number of Students	SCHOOL - Number of classes	Number of Students
Title 1 school	La Mesa - 4	58	MLK* - 4	113
	Valle Vista* - 2	43	Maggie Cordova* - 4	100
	Seven Bar* - 3	45		
	John Baker- 2	41		
	Zia*- 2	40	OUTDOOR EQUITY FUND	
	Monte Vista - 3	48	Puesta del Sol* - 5	105
	Cochiti* - 2	47		
	North Valley Academy - 3	50		
	Mission Ave*- 2	54		
	Bel-Air* - 2	46		
	Lavaland* - 1	20		
	San Antonito - 3	71		
	Chaparral* - 3	87		
TOTALS	32	650	13	318
RX Total Classes	45	RX Total Students	968	

Summary:

Mid-year: The 2nd quarter activities focused on scheduling and confirming presentations and the field trips; tracking presentations and scheduling reminder emails; and organizing the Earth Force *environmental action civics* process into an online classroom format on Canvas for teachers.

RiverXchange® remains focused on building meaningful watershed experiences for New Mexico students this year and has returned to a fully in person program for 2022-2023.

The agreement with the Middle Rio Grande Stormwater Quality Team (MRGSQT), including the contributions from Southern Sandoval County Arroyo Flood Control Authority (SSCAFCA), provides funding for 38 classes this year. At the suggestion by SSCAFCA, Ciudad Soil and Water Conservation District (SWCD) applied for additional funds to support RiverXchange this year through the Outdoor Equity Fund Grant, and Ciudad SWCD was successfully awarded the full request of \$9,650.00 to support additional classes. The Outdoor Equity Funding also supports a review of practices for equity and inclusion in our program as well as the strengthening of those practices. In total, by the end of September the final numbers are 45 classes, with 968 students participating. Twelve out of the sixteen schools are designated Title I.

Additionally, during the 1st quarter Ciudad SWCD employed Jessica "Saleema" Robinson as an Education Assistant to support our education programs. During the first quarter Saleema supported curriculum development for RiverXchange. Due to other opportunities, Saleema's time with Ciudad was short lived. However we were able to hire Theresa Aragon, a biologist and educator, to fulfill a role as Education Coordinator. Theresa has provided direct

www.ciudadswcd.org 505-225-7487

coordination and planning support for RiverXchange and remains employed with Ciudad SWCD.

Task 1: Recruit and select NM classes.

Complete by September 2022. Status: completed.

This year's recruitment for RiverXchange was met with a few obstacles. We found this year that many teachers' positions were changed at the beginning of the semester and in some schools all members of the prior 5th grade teaching cohort were in new positions. This made it difficult to predict how many classes from some schools would be joining RiverXchange, and if some schools would return at all. Colinas del Norte and Sandia Vista, both of whom have been with RiverXchange for at least 4 or more years and had significant teacher turnover, did not respond to our invitations to the program. As a result of the teacher scramble that ensued at the beginning of the year, RiverXchange staff reached out to presenters to see if they had contacts with schools that would be good candidates for RiverXchange. This proved to be a worthy effort because we were met with great interest, and only had to put two schools on the waitlist. Additionally, the Outdoor Equity Grant experienced some hold-ups in the procedure around securing the agreement for the grant, so one school - Puesta del Sol, only came on just at the end of September once we were able to confirm the grant. Around late September most schools had fully confirmed their participating classrooms in RiverXchange, with two schools confirming classes that still did not have a teacher. The other teachers at these schools desired for those students to participate in the program and offered to support those classes until they were assigned a teacher.

Of the 16 schools participating this year, 6 are completely new schools to RiverXchange -Bel Air, Mission Ave., Lavaland, San Antonito, Chaparral and Puesta del Sol.

Task 2: Review and revise curriculum.

Complete by September 2022. Status: completed.

RiverXchange staff are proud of this program's continued ability to meet the unique needs of 5th grade teachers in our region. Many elementary teachers suggest that they are the least comfortable teaching science subjects and others reflect that the district purchased science curriculum doesn't provide the same quality of experiences as RiverXchange. One of our most long-standing RiverXchange teachers shared with us that their school consistently scored higher than average on science testing scores and accounts that to their participation in RiverXchange.

This year the RiverXchange website was significantly updated in effort to improve participating teachers familiarity with, understanding of, and successful use of the RiverXchange curriculum, which is unlike many standard curricula as it blends outside presenters and field experiences with project-based learning. The RiverXchange website now reflects how the curriculum is broken down into 3 areas of study (and the comparative activities and associated leaders of those activities): Understanding a Watershed (Teacher-led, ensures the foundation of understanding a watershed with a Shower Curtain Watershed lesson or similar activity), Water in Our Society (Presentations with various agencies and presenters) and The River Ecosystem (Pre-lesson and field trip hosted by City of Albuquerque Open Space). These study areas have been defined in RiverXchange for many years through the Big Water Questions, which are suggested reflection prompts for students throughout the program. Using these three areas of study proved to be helpful in introducing RiverXchange to new teachers and refreshing experienced ones.

Most importantly, linking these 3 areas of study together is the Action Project. Using Project-based learning as a means to support student engagement in meaningful action in their watershed, the Action Project is a critical element of the RiverXchange curriculum. In its second year of delivery, previously called the capstone project, The Action Project aims to become a significant professional development opportunity for teachers as a means to deliver

high quality STEM and civic engagement through project-based learning in their classroom. Students will benefit from the Action Project by acquiring a multitude of skills that are required to take meaningful action for watershed health. From interviewing stakeholders, collecting data, researching history, policy and practices around an issue, to reporting on and advocating for change through action, the Action Project will build on the core content of RiverXchange and help students understand what it takes to inspire, demand or be a leader for effective change.

Task 3: Set teacher workshop dates and locations, review training agenda, order curriculum materials, and conduct workshops.

Complete by October 2022. Status: completed.

Two teacher workshops were held this year on September 23 and September 30 at the Open Space Visitor Center, with a total of 31 teachers in attendance. Teachers from Chaparral, San Antonito and Puesta del Sol were unable to attend due to late registration to the program,

however staff met with these teachers outside of the workshop to train them on the program and schedule their presentations.

This year's workshops featured BEMP educators Laura Pages and Annie Montes, who facilitated an activity called "Dabbling in Data." In this activity, groundwater table data is recorded on graphs for multiple years to see seasonal trends and observe periods of drought or heavier than normal snowmelt or precipitation as a means to discuss the relationship between weather patterns, groundwater and ecosystem health. Highlighting BEMP as a collaborative partner with Ciudad SWCD and RiverXchange was helpful for teachers to see how our program fits into the larger landscape of watershed education in our community and how students will eventually build on RiverXchange in future outdoor and environmental education experiences.

The workshop also focused on the framework for The Action Project with teachers, with discussion in small groups on how to implement the project in the classroom. Reflections from that discussion was shared in the larger group, and while feedback was positive and enthusiastic, it demonstrated the need for even more clear and direct guidance on the framework, which was helpful for staff to understand so we can find a way to meet that need.

Task 4: Review Action Project format and reporting system.

Goal: Complete by September 2022. Status: in process

Mid-year: In October, Erin Blaz attended the North American Association of Environmental Education's national conference in Tucson, AZ. At this conference, Ms. Blaz was introduced to Earth Force and their "Environmental Action Civics" process. This process is a fully developed framework for completing an action project and aligns with the RiverXchange Action Project Framework that was in development on our end. Earth Force freely shares its process for educational purposes and the integration of this process into RiverXchange has been discussed

www.ciudadswcd.org 505-225-7487

with their team. While our original framework for the Action Project included 5 steps and guiding questions, the Earth Force process has 6 steps with adjoining lesson plans, videos, activity templates, and helpful tips for each step. An overview of the Earth Force Resources can be found <u>here.</u>

The project reporting system is in development. We are using a free online learning management system called Canvas to post the Earth Force Learning Process, much like an online class for teachers to follow and implement the process. Canvas allows teachers to upload content such as media files, which we are hoping to obtain for the Children's Radio Hour show which will feature RiverXchange classes for their Earth Day segment.

Task 5: Review, update and distribute pre-survey to all classes before presentations begin and track completion.

Begin August 2022. On-going through Dec 2023. Status: completed.

This year's survey was updated slightly with a change to the possible answers being narrowed to mostly True, False or I haven't learned this yet. Rather than allowing students to only show a scaled response that either shows correct or incorrect knowledge, we are attempting to offer "I haven't learned this yet" as a strategy to show authentic learning in post-survey.

The Pre-Survey can be viewed from : www.riverxchange.com/Survey

Task 6: Monitor, coordinate and provide support to teachers for Action Projects. Begin December 2022. On-going through May 2023. **Status: approaching.**

Mid year: Staff is making every effort to ensure teachers have easy access to the Earth Force materials as guidance for the Action Project. On November 30, staff hosted an Action Project

www.ciudadswcd.org 505-225-7487

Discussion on Zoom to review the Earth Force process, orient teachers to the Canvas classroom and show how to upload recordings of students reporting on their projects. Sixteen teachers attended this discussion and 19 teachers have joined the Canvas classroom.

Task 7: Coordinate field trips.

Begin September 2022. On-going through May 2023. Status: in process.

Field trip coordination is in progress with our main point person, Ellie Althoff, from CABQ-OSD. Ellie will continue to offer a field trip pre-lesson this year, focused on the River of Change from the Bosque Education Guide. Ellie is coordinating the field trips so that she will offer the pre-lesson the same week as the pole planting field trip. This is an exciting addition to the program as students will be taking immediate action by pole planting native trees after they learn about the impacts of flood control measures on the Bosque and riparian ecosystem of the Rio Grande. Field trips will begin in December and run through March on Thursdays and Fridays.

Mid-year: Two field trips took place in December in the Bosque off of Paseo del Norte and Rio Grande. 68 students attended and 43 cottonwoods were planted. This site has been confirmed for January plantings, but Open Space is still evaluating the best location for Feb and March plantings. This is unique as most years OSD confirms all pole planting locations at once. Bus costs have increased significantly and staff is working on finding the best vendors to service the field trips.

Task 8: Coordinate classroom guest speakers.

Begin September 2022. On-going through May 2023. Status: in process.

With the program moving to in-person presentations this year, coordinating and getting presenters back on board took a little extra effort as some had not presented for the last two years as they offered a video recording of the presentation instead (i.e. Rio Rancho Utilities, Sandia Labs). Additionally, both APS and RRPS required different levels of background checks. Ample notice was given to those presenters in order to complete those requirements.

APS

Drinking Water and Wastewater Presenters - Ellie Garcia & Rhea Trotman from ABCWUA Stormwater - Sandia Labs, Leads- John Kay and Nora Wintermute and other various presenters. Agriculture- Still TBD, BernCo Coop Ext can not serve the 32 classes. We are working to find a solution, as this continues to be a challenging presentation to fill in Albuquerque. Field Trips and Pre-Lesson, Ellie Althoff and Kyle Bality of CABQ-OSD

RRPS

Drinking Water and Wastewater Presenters - Ellie Garcia. ABCWUA educators generously offered to cover RRPS this year, as the CoRR Utility dept was not yet ready due to new staff and capacity issues.

Stormwater - John Stomp and Andy Edmondson at SSCAFCA Agriculture- Steve Lucero and Rachel Zweig, Sandoval County Coop Ext. Field Trips and Pre-Lesson, Ellie Althoff and Kyle Bality of CABQ-OSD

Mid-year: All presentations, except Agriculture for APS have been scheduled and confirmed with presenters and classrooms. RiverXchange staff are exploring options to present the

www.ciudadswcd.org 505-225-7487

Agriculture themselves, as it may be more efficient time and budget wise than seeking new partnerships with little time left to schedule.

Task 9: Review and track Action Project progress

Begin December 2022. On-going through May 2023. Status: in process.

Tracking and reporting will begin in December.

Mid-year: Staff have shared with teachers the importance of documenting the action projects along the process and have designated a place to upload recordings, documents or pictures to the Canvas classroom. The Canvas platform became accessible to teachers at the end of November and with December being a busy month, we expect to see more to report on in the 3rd quarter.

Task 10: Distribute post-survey to classes after they complete presentations and field trip, complete metrics evaluation and review.

Begin February 2023. On-going through April 2023. Status: approaching.

Post- surveys will be distributed as soon as classes finish their presentations and field trip.

Task 11: Review Action Projects for RiverXchange Excellence and award winners. April 2023. Status: approaching.

This year, in collaboration with the Children's Radio Hour, we are hoping to feature students discussing their Action Projects on the Earth Day show in April.

Mid-year: Staff are working on guidance and criteria for awards to be released in January.

Task 12: Collect and analyze teacher feedback.

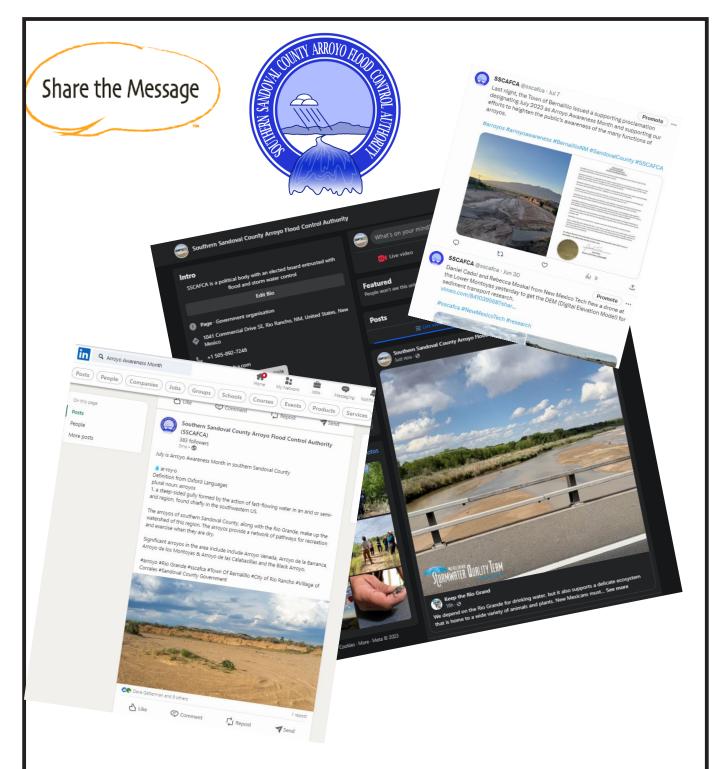
Complete by May 2023. Status: approaching

Staff will revise the teacher feedback form and offer it to teachers by the end of April.

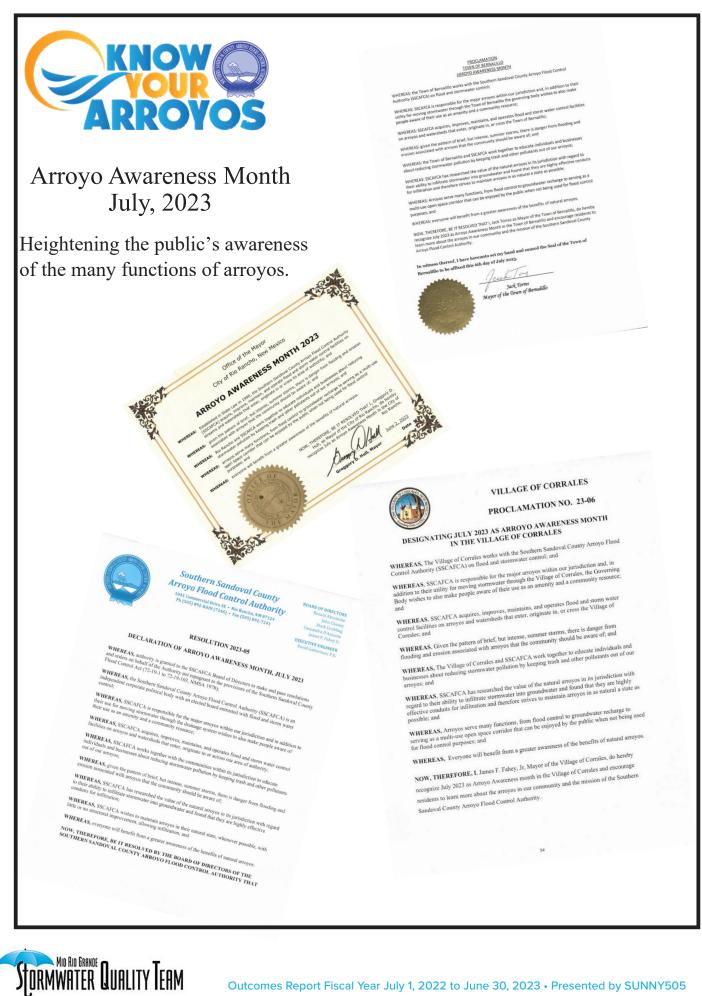
Task 13: Create, print and mail thank you cards to in-kind partners and certificates of recognition to teachers.

Complete during June 2023. Status: approaching

We will maintain correspondence with our in-kind partners throughout the school year and send thank you notes as needed.


Task 14: Reporting to sponsors.

Midyear report by January 31, 2023. Final report by June 1, 2023.


insert RiverXchange EOY Report (34 pages)

SSCAFCA shares social media messages from the Mid Rio Grande Stormwater Quality Team on our own Social Media pages. We also post and place our own Stormwater Quality Messaging on our social media pages.

EDUCATION BOUTREACH & ENGAGEMENT

Tour of the HJC for members of the Meadowlark Senior Center

Meeting with the Mariposa homeowners Association

Talking to the Sandoval County Master Gardnerrs

HARVEY JONES Channel Outfall

A low-impact development project which leveraged treated wastewater effluent and stormwater to establish a wetland on the banks of the Rio Grande

WETLANDS ARE AMONG THE MOST EFFECTIVE IN TERMS OF POLLUTANT REMOVAL AND ALSO OFFER AESTHETIC AND HABITAT VALUE.

Arroyo Classroom

Mid-year report 2022-2023

October-December

Submitted by: Education Manager Erin Blaz

The Arroyo Classroom Team: Erin Blaz, Theresa Aragon, Astrid Mooney

Participating Schools:

	SCHOOL	Number of classes	Number of Students
Title I*	Enchanted Hills Elem.	6	126
	Martin Luther King Elem.*	5	100
	Sandia Vista Elem.	6	141
	Maggie Cordova Elem.*	6	119
	Cielo Azul Elem.*	5	108
	Puesta del Sol Elem.*	5	103
	Colinas del Norte*	5	107
	TOTALS	38	804

Task 1: Recruit and select classes.

Complete by September 2022. Status: completed.

Recruitment was exciting this year as all the schools we reached out responded with interest in the program, including Cielo Azul who did not participate in 2021-2022. Arroyo Classroom participants generally include the whole 3rd grade cohort, so offering the program to a school means that serving the whole grade level doesn't always line up exactly with the number of classes we target in our agreement with MRGSQT & SSCAFCA. This year, as class sizes and teachers shuffled around much like RiverXchange, we ended up with 38 classes and 804 students. Since this is 3 more classes than the 35 in our agreement with the funders and we compensate presenters for all 4 presentations in this program, Ciudad SWCD is working to figure out a solution to the budget increase for presentations that will need to be covered. Ciudad SWCD will propose solutions to the funders before any budget adjustments are made.

Task 2: Review and revise evaluation and curriculum.

Complete by September 2022. Status: completed.

The pre and post survey was revised, with a few slight changes to reflect our guest speakers program this year. The answer option "I haven't learned this yet" was also added to the Arroyo Classroom survey, as it was the RiverXchange survey.

Task 3: Coordinate classroom guest speakers.

Begin September 2022. On-going through May 2023. Status: in process.

All presentations are resuming in person programming this year. All presentations have been fully scheduled.

This year Hawks Aloft will be the only outside contractor for the program. Hawks Aloft is a great partner for this presentation as they have a team of educators and a variety of birds for the presentation. Unfortunately, they have informed us that in future years they will not be able to perform this service at the current compensation rate.

Justin Stevenson of RD Wildlife and our Bat presenter has confirmed he is unavailable this year, but hopes to resume involvement in the program in the future. Theresa Aragon, a biologist and educator, now formally employed with Ciudad SWCD, offered a Reptile/Arthropod presentation for Arroyo Classroom last year with Nature Matters and so she will be offering a similar presentation this year.

The Watershed presentation and Arroyo Walk/Field trip will be offered by Erin Blaz. Arroyo Walks have been scheduled in the fall this year to ensure they are completed (in case any pandemic related issues change school policies) and to explore if holding the walk first has any benefits on the following presentations.

Mid-year: All presentations have been scheduled. We met some challenges this year with scheduling the Bird presentations with Hawks Aloft. Once everything was scheduled and Hawks Aloft reviewed the schedule, they notified us that most of the presentation times would need to be moved to reduce the gaps between presentations as this was not ideal for the well-being of the birds, or the time required by staff. Theresa had to go back to these schools and move the times around, which proved to be difficult for some schools as their schedules are very limited in openings. Once everything was rescheduled, Hawks Aloft approved the final updated schedule. All other presentations are conducted by Ciudad education staff, so we are able to provide more flexibility with teachers' school schedules and gaps between presentation times.

During the second quarter, all 38 classes received their first presentation - which was either the Arroyo Walk or Watershed presentation (if weather was not good). 24 classes received the Bird presentation and 20 class received the Reptile presentation.

Task 4: Collect and analyze teacher feedback.Complete by May 2022. Status: approaching.

Staff will revise teacher feedback form and submit to teachers at the end of the program.

Task 5: Reporting to sponsors.

Midyear report by January 31, 2022. Final report by June 1, 2022.

insert Arroyo Classroom Final Report (21 pages)

Water Auth

Is there info. for this page, or is it eliminated?

dvertising.

See the Water Authority television advertising at https://youtu.be/AJojsyJfnK4.

From May 2023 to current, the Town of Bernalillo has hosted the educational stormwater kiosk with approximately .5 visitors per day.

In addition, we have distributed stormwater brochures from our of the Planning Department Office and Town Hall reception desk. Approximately 30.

We have also produced newsletter articles in support of stormwater to include the promotion of the kiosk and fats, oils and greases.

BOSQUE SCHOOL Challenging Education

ADD 2021 BEMP Education Report.pdf HERE

(18 pages)

Albuquerque Metropolitan Arroyo Flood Control Authority

On April 28th, 2023 AMAFCA presented to a studio class at UNM's school of architecture.

BEARARARROYO LANDSCAPE DESIGN GUIDELINES

LA503/403 Urban Typologies Studio **Final Presentation**

Monday, May 8th 1:30-3:30 PM UNM SA+P Room P135 Please join us for a gallery-style review exploring Albuquerque's Bear Arroyo and student ideas to improve recreation access and water quality, while improving habitat and environmental education.

April 6, 2023

Dear AMAFCA,

On behalf of the Land and Water Summit Planning Committee, Ciudad Soil & Water Conservation District would like to take this opportunity to thank you for the generous sponsorship in the amount of \$3,500 that was provided for the 2023 Land and Water Summit Hybrid Conference. As the fiscal manager for the Land and Water Summit, Ciudad SWCD is pleased to report that the AMAFCA charitable **Reservoir Level** sponsor contribution assisted with the planning efforts and implementation of the conference.

Through AMAFCA's sponsorship, the Land and Water Summit hosted a pre-conference field trip with 55 attendees and a conference with 249 registered attendees, 131 in-person and 118 remote viewers, and 20 sponsors receiving 30,481 impressions.

The 2023 Land and Water Summit featured a diverse range of presentations on topics related to building resilient landscapes and societies in the face of environmental challenges. A common theme that emerged was the importance of collaboration with communities in developing strategies for resilience. Presentations on shortage-sharing and water agreements highlighted the need for cooperation and sharing in managing scarce resources. Indigenous resiliency was also a prominent topic, emphasizing the importance of traditional knowledge and analysis in land and water management.

The Land and Water Summit annual conference plays a vital role in continuing education about resource conservation and best practices for safeguarding and enhancing local landscapes. The event could not be possible without AMAFCA's financial contribution. The Land and Water Summit Planning Committee and Ciudad SWCD are immensely grateful for your generous support and sponsorship of the conference.

Sincerely,

J. Steven Glass Land and Water Summit Planning Committee, Co-Chair Ciudad Soil & Water Conservation District, Board Chair

Middle Rio Grande Stormwater MS4 Technical Advisory Group

MEMORANDUM OF AGREEMENT

A COOPERATIVE AGREEMENT, CREATING THE MIDDLE RIO GRANDE MS4 TECHNICAL ADVISORY GROUP, IN SUPPORT OF COMPLIANCE EFFORTS FOR A STORMWATER DISCHARGE PERMITTING SYSTEM FOR THE MIDDLE RIO GRANDE VALLEY IN ACCORDANCE WITH THE FEDERAL CLEAN WATER ACT.

WHEREAS, the United States Environmental Protection Agency (EPA), Region 6 regulates the discharge of stormwater from municipal separate storm sewer systems (MS4s) in New Mexico through the issuance of an MS4 permit for the Middle Rio Grande valley urbanized area under the authority of the National Pollutant Discharge Elimination System (NPDES) regulations (40CFR122); and

WHEREAS, the Middle Rio Grande area is comprised of many diverse local, state, federal and tribal entities, each with separate and distinct authority and responsibilities; and

WHEREAS, the Middle Rio Grande area entities potentially eligible for authorization under the proposed NPDES General Permit No. NMR04A000 (hereinafter "MS4 Permit"), and therefore are eligible to enter into this Memorandum of Agreement (hereinafter "Agreement") in furtherance of the requirements of the MS4 Permit, are the City of Albuquerque, Albuquerque Metropolitan Arroyo Flood Control Authority (AMAFCA), University of New Mexico, New Mexico Department of Transportation District 3, Bernalillo County, Sandoval County, Village of Corrales, City of Rio Rancho, Los Ranchos de Albuquerque, Kirtland Air Force Base, Town of Bernalillo, State Fairgrounds/Expo New Mexico, the Southern Sandoval County Arroyo Flood Control Authority (SSCAFCA), the Eastern Sandoval County Arroyo Flood Control Authority (ESCAFCA), Sandia National Laboratories/Department of Energy, Pueblo of Sandia, Pueblo of Isleta, and Pueblo of Santa Ana (collectively "Stormwater Management Entities"); and

WHEREAS, the proposed MS4 Permit encourages cooperative efforts among separate local, state, federal and Tribal governments to reduce the amount of pollutants discharged with stormwater from the Middle Rio Grande urbanized area MS4s; and

WHEREAS, continued cooperation among the Stormwater Management Entities in the MS4 Permit offers an enhanced opportunity for each entity to remain aware of the requirements in the MS4 Permit and facilitate compliance with conditions of the permit;

NOW, THEREFORE, BE IT AGREED THAT:

1. The signatories to this Agreement (hereinafter collectively referred to as "Parties" and individually referred to as "Party") support and encourage a cooperative commitment to assist one another with technical issues regarding compliance with the MS4 Permit and agree to form the Middle Rio Grande MS4 Technical Advisory Group (MS4TAG).

2. The purpose of the MS4TAG will be to exchange technical information regarding compliance with the MS4 Permit, exchange ideas among Parties regarding compliance efforts, and exchange information regarding illicit discharges detected within each Party's jurisdiction. The MS4TAG shall have no binding financial authority and shall be strictly advisory in nature.

3. Nothing in this Agreement shall be construed as obligating a Party to this agreement to expend funds for any purpose, and no Party shall be required to contribute any funds in order to participate in this Agreement. In the event the Parties determine that any joint expenditure of funds among multiple Parties becomes necessary in order to comply with the requirements of the MS4 Permit, a separate agreement shall be entered into between the affected Parties regarding any and all such expenditures at that time.

4. The term of this Agreement shall run from the date the MS4 Permit is issued by the EPA until the date the MS4 Permit is terminated or expires, whichever occurs first. This Agreement may be terminated in its entirety at any time upon the mutual agreement of all of the then-existing Parties to this Agreement. In the event any Party wishes to withdraw from this Agreement without terminating the other Parties' interests in this Agreement, withdrawal shall become effective upon ninety (90) days prior written notice to the other Parties. Withdrawal shall fully and completely terminate that Party's interest in and obligations under this Agreement. Following any Party's withdrawal, this Agreement shall continue in full force and effect as to all remaining Parties to the extent possible.

5. This Agreement does not address the "Public Education and Outreach" or "Cooperative Sampling" sections of the MS4 Permit. Any MS4TAG efforts regarding either of these sections of the MS4 Permit under this Agreement shall be strictly in furtherance of the spirit of cooperation intended among the Parties. Each Party acknowledges its obligations under the "Public Education and Outreach" and "Cooperative Sampling" sections of the MS4 Permit are separate and apart from its activities under this Agreement, and a separate agreement will be required for any collaboration among the Parties with respect to those permit requirements.

The Parties will appoint two (2) Co-Coordinators from among the Parties, one of 6. which must be from a Party located within the Bernalillo County geographical area and one of which must be from a Party located within the Sandoval County geographical area. Appointment of a Co-Coordinator shall be by majority vote of the voting Parties, with only those Parties located in the county of Bernalillo voting on the Co-Coordinator from that area, and only those Parties located in the county of Sandoval voting on the Co-Coordinator from that area. Co-Coordinators must be appointed annually in each subsequent permit year, or earlier if the position becomes vacant for any reason. For the New Mexico Department of Transportation District 3, which operates stormwater management facilities in both counties, for the purposes of this section, they shall select one county affiliation in year one of the agreement and alternate affiliations is subsequent years of this Agreement. The Co-Coordinators will be expected to coordinate the Parties' efforts under this Agreement, including facilitating meetings of the MS4TAG at least monthly for the first year of the MS4 Permit. In years two through five of the permit, the frequency of meetings may be reduced to quarterly with additional meetings called as necessary to discuss issues regarding MS4 Permit compliance.

7. Each Party shall be entitled to one (1) vote on any action items.

8. This Agreement creates no obligations on behalf of any Party to any other Party to this Agreement, including for any requirements imposed or determinations made by EPA. The Parties acknowledge and agree that each shall at all times remain individually liable for full compliance with the requirements of the MS4 Permit, including EPA's determination regarding the implementation schedule.

9. This Agreement may be modified in writing at any time upon the mutual agreement of the Parties.

10. Parties can be added at any time during the life of this Agreement. A potential future Party's submittal of a signature page to the Co-Coordinators and approval by the Co-Coordinators shall add the Party to the Agreement.

10-07-13

Approved as to Form:

Bernard P. Metzgar, SSCAFCA Attorney

Date: (1

Southern Sandoval County Arroyo Flood Control Authority

10/18/13 Date:

un Donald Rudy, Chairman

9-30-13

City of Rio Rancho

Approved as to Form: City Attorney 18 Date:

Recommended By: Dolores Wood, Director

Date: 11. 4.13

Approved By:

6 Keith Riesberg, City Manager

Date: 1/1/13

9-30-13

Approved as to Form:

and have George Perez

Town of Bernalillo Attorney

Date: <u>70/1</u> 2013

Mayor Jack Torres, Town of Bernalillo

Date: 10/14/13

Attest:

Ida Fierro, Town Clerk

Date: 10/19/13

10-07-13

VILLAGE OF CORRALES

10.08.13 By: Philip Gasteyer, Mayor Date

Attest: 10-08-2013 Juan Reyes, Village Clerk Date

10-07-13

IN WITNESS WHEREOF, the undersigned have caused this Agreement to be executed.

Albuquerque Metropolitan Arroyo Flood Control Authority

Tim Eichenberg Chair of the Board of Directors

Attest:

home

Date: 10/24/2013

Bruce Thomson Secretary/Treasurer

10/24/13 Date: ____

10-07-13

VILLAGE OF LOS RANCHOS DE ALBUQUERQUE

Date: November 14, 2013

HAM LARRY P. ABRAHAM

LARRY P. ABRAHAM MAYOR

(SEAL)

Z

STEHANIE DOMINGUEZ VILLAGE CLERK

U.S. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION SANDIA FIELD OFFICE

<u>|4100VZ013</u> Date By: 1 L. Beausoleil Geoff Manager

Approved as to Form:

Bernard P. Metzgai ESCAFCA Attorney

Date:

Eastern Sandoval County Arroyo Flood Control Authority

Date: NOU. 19, 2013

1111

Salvador Reyes, Chairman

9-30-13

UNIVERSITY OF NEW MEXICO

Approved by:

Date: 12 David Harris, Executive Vice President

Recommended by:

menu

Date: 12-10-13

Carla P. Domenici, Director Safety and Risk Services Department

10-07-13

New Mexico Department of Transportation

Approved By:

Tim Faciller

Date: 12/22/13

Timothy L. Parker, M.S., P.E. NMDOT District Three Engineer

Approved As To Form Only:

EE E 7 0

Ken Swain, Assistant General Counsel Office of the General Counsel

Date: 12/18-12013

BC CCN 2014-0069

BERNALILLO COUNTY

Motion to: Approve a Memorandum of Agreement (MOA) joining the County with other local entities participating in the Middle Rio Grande MS4 Technical Advisory Group (MS4TAG).

Approved this 28th day of January, 2014

BOARD OF COUNTY COMMISSIONERS Debbie Ö'Mallen Chair Vice Chair Art De lruz. Mage art Stebbins, Mendber Talbert, Member Lonhie C. Johnson Member Va

APPROVED FORM: County Attorn Date:

ATTEST:

Maggie Toplouse Oliver, County Clerk

Date: 1/2x/11

10-07-13

Approved as to Form: Patrick F.Trujil

× .,

Sandoval County Attorney

OIS Date:

Sandoval County

2/6/2014 Date:

Phillip Roz Phillip Rios, County Manager

Approved as to Form: David Tourek City Attorney

10

Date: _

Recommended By:

Michael J. Riordan, P.E. Director, Department of Municipal Development

126/14 Date: 2

Approved By:

Robert J. Perry Chief Administrative Officer

Date:

Memorandum of Agreement accepted on behalf of:

UNITED STATES AIR FORCE KIRTLAND AIR FORCE BASE

By_

Date 28 Dec 15

ERIC H. FROEHLICH, COLONEL, USAF INSTALLATION COMMANDER

and Funding of the Storm Water Team

THIS AGREEMENT is made and entered into this 27 day of August, 2008, by and among the County of Bernalillo ("COUNTY"), the City of Albuquerque ("COA"), the Albuquerque Metropolitan Arroyo Flood Control Authority ("AMAFCA"), the New Mexico Department of Transportation ("NMDOT"), the Southern Sandoval County Arroyo Flood Control Authority ("SSCAFCA"), and the Ciudad Soil and Water Conservation District ("CIUDAD"), all political subdivisions of the State of New Mexico, and the University of New Mexico ("UNM"), a state educational institution, individually referred to as "Party" and collectively referred to as "Parties."

WITNESSETH:

WHEREAS, the National Pollution Discharge Elimination System (NPDES) storm water discharge permits for small and large municipal separate storm sewer systems ("MS-4") include a minimum control measure regarding public outreach and education; and

WHEREAS, this minimum control measure requires each permittee to develop and distribute educational materials to the community or conduct equivalent public outreach activities about the impacts of storm water discharges on receiving water bodies and the actions that the public can take to reduce pollutants in storm water runoff; and

WHEREAS, COA, AMAFCA, NMDOT, and UNM, co-permittees of a MS-4 Phase I permit, and the COUNTY, a permittee of a Phase II permit, entered into a Cooperative Agreement dated October 20, 2005 in order to accomplish said public outreach and education, and the group informally became known as the Storm Water Team; and

WHEREAS, the Storm Water Team hired a Storm Water Quality Education Coordinator ("Coordinator") to help develop a public education campaign and produce public service announcements including print materials for distribution, and that contract expires November 2008; and

and Funding of the Storm Water Team

WHEREAS, SSCAFCA desires to combine efforts to educate the public on storm water quality as required in their Phase II storm water discharge permit, and to become one of the participating agencies of the Storm Water Team; and

WHEREAS, CIUDAD desires to combine efforts to educate the public on storm water quality as part of their Watershed Restoration Action Strategy, and to become one of the participating agencies of the Storm Water Team; and

WHEREAS, SSCAFCA and CIUDAD both desire to provide funding as part of their membership to the Storm Water Team; and

WHEREAS, each Party has an interest in reducing pollution and/or meeting storm water permit requirements within their respective boundaries, which are shown in Exhibit 1; and

WHEREAS, with new members being added, it is appropriate to enter into this Agreement in order to formalize the Storm Water Team mission and function, and establish future funding streams.

THEREFORE IN CONSIDERATION OF THE PROMISES AND COVENANTS CONTAINED HEREIN, THE PARTIES HERETO AGREE AS FOLLOWS:

- 1. The Storm Water Team ("Team") will include all members that have signed a Cooperative Funding Agreement, comply with its terms and continue to fund the team. Additional non-voting members will include other agencies, organizations, or individuals that will provide technical assistance needed to allow the Team to accomplish its mission.
- 2. The Team will serve as the focal point on public education and outreach regarding storm water quality in the Albuquerque Reach of the Rio Grande watershed, which is

and Funding of the Storm Water Team

the area that drains to the Rio Grande between Algodones and Isleta Pueblo. The Team mission statement is hereby agreed to by the Parties:

The Storm Water Team is a multi-agency committee dedicated to providing public education and awareness regarding storm water pollution and how to reduce debris and other pollutants in the Albuquerque Reach of the Rio Grande and its tributary arroyos.

- 3. The Team will have an Executive Committee made up of one voting member from each Party in good standing, which is defined as having paid their expected contribution, as described in Section 4. Each Party in good standing will designate a staff member to be on the Executive Committee. Other staff liaisons will be assigned to the Team as necessary to support the Team mission. Other/outside agencies may participate on the Team by attending meetings and giving input; however, only the Executive Committee may vote on Team decisions. The purpose of the Executive Committee will be to administer and direct the Team and Coordinator in accordance with the provisions herein. Decisions of the Executive Committee will be decided by majority vote of the Executive Committee.
- 4. Each Party agrees to provide payment for Fiscal Year 2009 in the amount shown in the Contribution Schedule, which may include the value of Executive Committee approved in-kind services, in Attachment A. For subsequent Fiscal Years, the Contribution Schedule may be adjusted by the Executive Committee, including the value of in-kind contributions.
- 5. AMAFCA will be the fiscal agent for the purposes of this Agreement. All funds will be held in a separate bank account for the purposes of this Agreement. AMAFCA shall make available to any interested Party, all records, receipts, and other

and Funding of the Storm Water Team

documentation with respect to all matters concerning this Agreement, and shall have this account included in its annual audit.

- 6. Each Party agrees that a Storm Water Quality Education Coordinator will be hired through the Request for Proposal (RFP) process in advance of the expiration of the current Coordinator's contract. The Coordinator shall be a contractor and not an employee of AMAFCA. Responsibilities included in the Storm Water Quality Education Coordination contract will be to develop and manage a comprehensive educational and awareness campaign, arrange all purchases for deliverables and advertising on behalf of the Team, and make presentations to the public as directed. Each Party will have one representative on the Selection Advisory Committee for the request for proposals process. The Selection Advisory Committee will rank proposals and recommend the top three respondents to the AMAFCA Board of Directors. Upon AMAFCA Board of Directors' approval, AMAFCA will negotiate an agreement with the selected consultant. The Executive Committee will provide input on scope and fees; however, final negotiations and approval will be at AMAFCA's sole discretion.
- 7. The Parties agree that the Storm Water Quality Education Coordination contract is an ongoing program. The effectiveness of the Storm Water Quality Education Coordination contract, with regard to the Team mission statement, will be evaluated prior to annual renewal(s) or request for proposals.
- 8. AMAFCA will invoice each Party for their respective participation, minus the value of any Executive Committee approved in-kind contributions, in July, at the start of the Fiscal Year. Each Party will pay such invoices to AMAFCA within forty-five

and Funding of the Storm Water Team

(45) days of the date of the invoice. Invoices will be sent to Team members listed in Attachment B.

- 9. It is intended that the Team's operation and function described in this Agreement are ongoing, subject to continued support and authorized funding by each of the Parties. Each Party has the option to not participate in this Agreement in the future by sending written notice to all the other participating Parties at or before the expiration of the Fiscal Year. In such event, the terminating Party shall not be entitled to return of any contribution(s) made under this Agreement; and this Agreement shall remain in full force and effect by and among the remaining Parties.
- 10. The Team may accept one-time contributions from outside funding sources, to be used to support the Team mission. The Executive Committee will consider the requested uses of such one-time contributions and will ensure the uses are consistent with the Team's ongoing public outreach and education program. Such contributions shall not constitute voting privileges on the Executive Committee.
- 11. The Parties agree that effort will be expended within the respective boundaries of each participating agency, proportional to funding contributions.
- 12. If any situation arises which adversely affects any Party's participation in this Agreement, said Party will immediately, and in writing, notify the other Parties. Any circumstance that materially affects this Agreement will be promptly and equitably resolved by all Parties and if necessary, an amendment to this Agreement shall be executed.
- 13. The obligations of each Party under this Agreement shall be performed in compliance with all applicable laws, statutes and ordinances. Nothing herein is intended to

and Funding of the Storm Water Team

constitute any agreement for the Parties to perform any activity in violation of the Constitution or Laws of the State of New Mexico or the Ordinances of any entity that is a Party to this Agreement.

- 14. If any clause or provision in this Agreement is illegal, invalid or unenforceable, under present or future laws effective during the term of this Agreement, then and in that event, it is the intention of the parties hereto that the remainder of this Agreement shall not be affected thereby.
- 15. It is specifically agreed among the Parties that this Agreement does not, and is not intended to, create in the public, or any member thereof, any rights whatsoever, such as but not limited to, the rights of a third Party beneficiary, nor to authorize anyone not a Party to this Agreement to maintain a suit for wrongful death or any other claim whatsoever.
- 16. As among the Parties, each shall be solely responsible for any and all liability from personal injury, including death, or damage to property, arising from any negligent or intentional act or failure to act of the respective Party, its officials, agents, contractors or employees pursuant to this Agreement. Liabilities of each Party shall be subject to the immunities and limitations of the Tort Claims Act, §§41-4-1, <u>et seq.</u>, NMSA, 1978, and any amendments thereto. By entering into this Agreement, the COUNTY and its "public employees" as defined in the New Mexico Tort Claims Act, the COA and its "public employees" as defined in the New Mexico Tort Claims Act, AMAFCA and its "public employees" as defined in the New Mexico Tort Claims Act, NMDOT and its "public employees" as defined in the New Mexico Tort Claims Act, UNM and its "public employees" as defined in the New Mexico Tort Claims Act, UNM and its "public employees" as defined in the New Mexico Tort Claims Act, UNM and its "public employees" as defined in the New Mexico Tort Claims Act, UNM and its "public employees" as defined in the New Mexico Tort Claims Act, UNM and its "public employees" as defined in the New Mexico Tort Claims Act, UNM and its "public employees" as defined in the New Mexico Tort Claims Act, UNM and its "public employees" as defined in the New Mexico Tort Claims Act, UNM and its "public employees" as defined in the New Mexico Tort Claims Act, UNM and its "public employees" as defined in the New Mexico Tort Claims Act, UNM and its "public employees" as defined in the New Mexico Tort Claims Act, UNM and its "public employees" as defined in the New Mexico Tort Claims Act, UNM and its "public employees" as defined in the New Mexico Tort Claims Act, UNM and its "public employees" as defined in the New Mexico Tort Claims Act, UNM and its "public employees" as defined in the New Mexico Tort Claims

and Funding of the Storm Water Team

Act, SSCAFCA and its "public employees" as defined in the New Mexico Tort Claims Act, and CIUDAD and its "public employees" as defined in the New Mexico Tort Claims Act, do not waive sovereign immunity, do not waive any defense and/or do not waive any limitation of liability pursuant to law. No provision in this Agreement modifies and/or waives any provision of the New Mexico Tort Claims Act.

- 17. The effective date of this Agreement shall be the latest date of approval by all of the interested Parties.
- 18. Upon approval by all Parties, the covenants, terms and conditions of this Agreement shall be binding upon and inure to the benefit of the Parties hereto, their successors and assigns.

and Funding of the Storm Water Team

IN WITNESS WHEREOF, the undersigned have caused this Agreement to be executed as of the day and year set forth above.

Albuquerque Metropolitan Arroyo Flood Control Authority

Danny Hernandez Chair of the Board of Directors

Attest:

Date:

March 20, 2008

Tim Eichenberg, Secretary/Treasurer

March 20, 2008 Date:

and Funding of the Storm Water Team

County of Bernalillo

Date: 5/22/55

Thaddeus Lucero, County Manager

Approved As To Form Only:

Deborah Seligman,

Assistant County Attorney

Date:

Recommended By:

Tom Zdunek XXXXXXXXX, Deputy County

Manager Public Works Division

Date:

BC CCN 2008-0264

and Funding of the Storm Water Team

City of Albuquerque

Approved As To Form Only: City Attorney Date: ____ Recommended By: C John Castillo, Director 0 Date: Approved By: Dr. Bruce Perhuan, Chief Administrative Officer V Date: _ 5 108 6

and Funding of the Storm Water Team

University of New Mexico

Recommended By:

Donna K. Smith

Director, Safety & Risk Services

Date: 4-23-

Approved As To Form Only:

Richard Mertz

Associate University Counsel

Approved By:

David W. Harris Executive Vice President for Administration

Date:

1/18 Date:

and Funding of the Storm Water Team

New Mexico Department of Transportation

Approved As To Form Only: Office of the General Counse 5/22 08 Date:

Approved By:

elssquez, NMDOT District Three Engineer 8/28/08 Date:

and Funding of the Storm Water Team

 \mathcal{C}

Ciudad Soil and Water Conservation District

-____

Date: april 7, 2008

Jeling Lauro Silva, Chair

and

and Funding of the Storm Water Team

Approved as to Form: Bernard P. Metzgar SSCAFCA Attorne 08 Date:

Southern Sandoval County Arroyo Flood Control Authority

Date: 5/2/08

John Chancy, Chairman

and Funding of the Storm Water Team

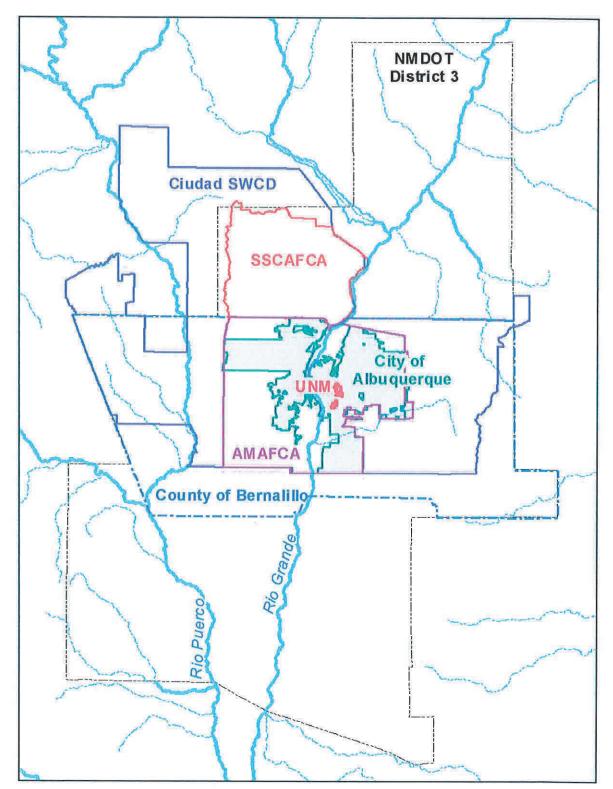


Exhibit 1 Boundaries of Participating Agencies

Page 15 of 17

and Funding of the Storm Water Team

Storm Water Team Intergovernmental Agreement – Attachment A

,

STORM WATER TEAM CONTRIBUTIONS

FY 05		Date received by AMAFCA
AMAFCA	\$10,000	12/01/2004
City of Albuquerque	10,000	04/28/2005
County of Bernalillo	10,000	12/02/2004
UNM	7,000*	07/19/2005 * \$5,000 in cash. \$2,000 in KNME video
NMDOT	10,000	05/26/2005
Total	\$47,000	
FY 06		
AMAFCA	\$10,000	12/23/2005
City of Albuquerque	10,000	
County of Bernalillo	10,000	01/23/2006
UNM	7,000	06/29/2006
NMDOT	10,000	02/02/2006
Total	\$47,000	06/29/2006
rotat	547,000	
FY 07		
AMAFCA	\$10,000	03/21/2007
City of Albuquerque	10,000	06/13/2007
County of Bernalillo	10,000	02/11/2008
UNM	7,000	05/22/2007
NMDOT	10,000	04/02/2008
Total	\$47,000	
FY 08		
AMAFCA	\$10,000	10/02/2007
City of Albuquerque	10,000	10/03/2007
County of Bernalillo	10,000	09/25/2007
UNM	7,000	03/18/2008 12/10/2007
NMDOT	10,000	
Total	\$47,000	04/02/2008
	4 7,000	
FY 09 Expected Contributions		
AMAFCA	\$10,000	
City of Albuquerque	10,000	
County of Bernalillo	10,000	
UNM	7,000	
NMDOT	10,000	
SSCAFCA	10,000	
Ciudad	10,000	
Total	\$67,000	

and Funding of the Storm Water Team

Storm Water Team Intergovernmental Agreement - Attachment B

STORM WATER TEAM CONTACT ADDRESSES

Christy Burton AMAFCA 2600 Prospect Ave NE Albuquerque, NM 87107

on invoices

cc Irene Jeffries (same address)

Storm Drainage Section Dept. of Municipal Development Attn: Kathy Verhage P.O. Box 1293, Rm. 301 Albuquerque, NM 87103

Vern Hershberger Safety & Risk Services 1 University of New Mexico MSC07 4100 Albuquerque, NM 87131

Carol Moritz, Administrative Manager Ciudad Soil & Water Conservation District 6200 Jefferson NE, Room 125 Albuquerque, NM 87109

Kathy Trujillo New Mexico Department of Transportation District 3 PO Box 91750 Albuquerque, NM 87199-1750

Patricia Dominguez Bernatillo County Public Works Division 2400 Broadway Blvd SE Bldg N Albuquerque, NM 87102

David Stoliker SSCAFCA 1041 Commerical N.E. Rio Rancho, New Mexico 87124 cc Roland Penttila (same address) on invoices

Send original invoices to: Accounts Payable I University of New Mexico MSC01 1290 Albuquerque, NM 87131

cc Mary Murnane (same address) on invoices

Middle Rio Grande Stormwater MS4 Compliance Monitoring Cooperative

INTERGOVERNMENTAL AGREEMENT

AN INTERGOVERNMENTAL AGREEMENT, CREATING THE MIDDLE RIO GRANDE MS4 COMPLIANCE MONITORING COOPERATIVE, IN SUPPORT OF COMPLIANCE EFFORTS FOR A STORMWATER DISCHARGE PERMITTING SYSTEM FOR THE MIDDLE RIO GRANDE VALLEY IN ACCORDANCE WITH THE FEDERAL CLEAN WATER ACT.

RECITALS

WHEREAS, the United States Environmental Protection Agency (EPA), Region 6 regulates the discharge of stormwater from municipal separate storm sewer systems (MS4s) in central New Mexico through the issuance of an MS4 permit for the Middle Rio Grande valley urbanized area, under the authority of the National Pollutant Discharge Elimination System (NPDES) regulations (40CFR122); and

WHEREAS, the Middle Rio Grande valley urbanized area is comprised of many diverse local, state, federal and tribal entities, each with separate and distinct authority and responsibilities; and

WHEREAS, the Middle Rio Grande valley urbanized area entities that are eligible for authorization under NPDES General Permit No. NMR04A000 (hereinafter "MS4 Permit"), and therefore eligible to enter into this Intergovernmental Agreement (hereinafter "Agreement") in furtherance of the requirements of the MS4 Permit, are the City of Albuquerque, Albuquerque Metropolitan Arroyo Flood Control Authority (AMAFCA), University of New Mexico, New Mexico Department of Transportation District 3, Bernalillo County, Sandoval County, Village of Corrales, City of Rio Rancho, Village of Los Ranchos de Albuquerque, Kirtland Air Force Base, Town of Bernalillo, State Fairgrounds/Expo New Mexico, Southern Sandoval County Arroyo Flood Control Authority (SSCAFCA), Eastern Sandoval County Arroyo Flood Control Authority (ESCAFCA), Sandia National Laboratories/Department of Energy, Pueblo of Sandia, Pueblo of Isleta, and Pueblo of Santa Ana (collectively "Co-permittees"); and

WHEREAS, the proposed MS4 Permit requires each Co-permittee to obtain and report stormwater compliance monitoring results in their MS4 Annual Report; and

WHEREAS, the proposed MS4 Permit encourages cooperative efforts among the Copermittees, including compliance monitoring activities, to reduce the amount of pollutants discharged with stormwater into the Rio Grande; and

WHEREAS, cooperation among the Co-permittees in the MS4 Permit through the Middle Rio Grande Compliance Monitoring Cooperative ("CMC"), with regard to monitoring requirements, offers the opportunity to reduce each individual Co-permittee's monitoring costs by cooperatively developing, funding, and executing a common monitoring plan without reducing the effectiveness of the monitoring plan.

04-26-2016

a Members cash contribution, provided however, that participation in the CMC shall not be considered in-kind contributions. The value of in-kind contributions will be determined by the membership of the CMC by equating the value of the service to the cost that would be paid by the membership of the CMC to have the in-kind service performed by a third party (non-CMC member) contractor. The Contribution Schedule is located in Attachment 1 to this Agreement. This Contribution Schedule may be modified by the CMC annually without requiring modification to this agreement, provided however, that it shall be adopted by unanimous vote of the Members. Any funds remaining at the end of the Agreement Year will be carried into the next Calendar Year of this agreement. In such event, the CMC may either elect to retain the excess funds from the prior Calendar Year as a contingency fund, or may lower the annual contribution schedules for that year for all Members in equal proportion, based on the total amount carried forward. In the event a Member does not have the resources to provide full payment for any funds required by the Contribution Schedule, the remaining Members may agree, by unanimous vote, amend the Contribution Schedule if it is in the best interest of the Each Member's obligations under this Agreement are contingent upon sufficient CMC. appropriations being made therefor by such Member's governing body sufficient to fulfill such Member's said obligations. If such appropriations are insufficient to such Member's obligations hereunder, such Member's shall promptly notify the other Members, and this Agreement shall terminate forthwith with respect to such Member.

FISCAL AGENT. The Members shall select one (1) Co-permittee to act as 7. Fiscal Agent for the CMC for the purposes of this Agreement. The Fiscal Agent shall act as the custodian of the CMC's funds, securities, and property. All funds will be held in a separate bank account for the purposes of this Agreement. All CMC funds shall be deposited promptly by the Fiscal Agent to the credit of the CMC. The CMC shall adhere to the Fiscal Agent's accounting and procurement procedures, provided such procedures comply with law. The Fiscal Agent shall make available to any interested Member, all records, receipts, and other documentation with respect to all matters concerning this agreement and shall have this account included in its annual audit. The Fiscal Agent shall maintain funds in accordance with all applicable state and Federal statutes. The Fiscal Agent shall be authorized on the CMC's behalf to sign checks, drafts, or other instruments for payment of money, acceptances, notes, or other evidences of indebtedness, to enter into contracts, or to execute and deliver other documents and instruments. This authority to enter into any contract or negotiated agreement shall be subject to approval by the CMC and subject to any limitations as set forth in this Agreement. Subject to the provisions of this Agreement, no loans shall be contracted on behalf of the CMC and no evidence of indebtedness shall be issued in its name unless authorized by a unanimous vote of the CMC Members. In consideration of the in-kind contributions anticipated from the Fiscal Agent, the total financial contribution requirements of the Fiscal Agent's Member agency, under any applicable agreement, shall be credited by the sum of one thousand dollars (\$1,000.00) for the term of the permit in which that Member serves as the Fiscal Agent.

8. **PAYMENTS.** The Fiscal Agent will invoice each Member for their respective participation, minus the values of any CMC approved in-kind contributions at the start of each member entity's Fiscal Year. Each Member will pay such invoices to the Fiscal Agent within

standing of the CMC, contracts may be used, with concurrence from all Members of the CMC, that have been issued by Members to perform elements of the monitoring program. If a contractor is used that has been procured by a Member in good standing of the CMC instead of the Fiscal Agent, then, with concurrence of the other Members of the CMC, an entity that is not the Fiscal Agent for the CMC may contract to have the services performed and upon successful completion of the services, submit an invoice, with no mark-up, to the Fiscal Agent for reimbursement. Reimbursement shall only be authorized for reasonable and necessary costs. All contractor's utilized for the purposes identified in this Agreement shall be procured in accordance with the State Procurement Code. Contractors will be agents of the Member issuing the contract.

13. **EVALUATION.** The Members agree that the Stormwater Monitoring contract is an ongoing program. The effectiveness of the Stormwater Monitoring contract, with regard to permit compliance, will be evaluated by the CMC prior to annual renewal(s) or request for proposals.

14. **LIMITATION ON SAMPLING ACTIVITIES.** The contractor's scope of services will be limited to the CMC-developed and EPA approved sampling plan and associated reporting. If, in the event of an exceedence during routine monitoring events, additional investigation is required by the EPA to identify the source of a potential contaminant, the CMC may expand monitoring activities to the degree necessary to locate the likely entry point of the potential contaminants. Once the likely entry point is identified, further investigation into the source of the potential contaminant will become the responsibility of the specific Co-permittee(s) having jurisdiction at the location where the likely entry occurred. The CMC shall have no responsibility, fiscal or otherwise, to investigate potential sources of contamination outside of the river or its affiliated Middle Rio Grande Conservancy District-owned water conveyances.

15. **PARTICIPATION AFFECTED.** If any situation arises which adversely affects any Member's participation in this Agreement, said Member will immediately, and in writing, notify the other Members. Any circumstance that materially affects this Agreement will be promptly and equitably resolved by all Members and if necessary, an amendment to this Agreement shall be executed.

16. **COMPLIANCE WITH GOVERNING LAWS.** The obligations of each Member under this Agreement shall be performed in compliance with all applicable laws, statues, and ordinances. Nothing herein is intended to constitute any agreement for the Members to perform any activity in violation of the Constitution or Laws of the State of New Mexico or the Ordinances of any Co-permittee that is a Member of this Agreement.

17. **SEVERABILITY.** If any clause or provision of this Agreement is illegal, invalid or unenforceable, under present or future laws effective during the term of this Agreement, then and in that event, it is the intention of the Members hereto that the remainder of this Agreement shall not be affected thereby.

04-26-2016

EACH ENTITY WILL EXECUTE AGREEMENT INDIVIDUALLY. SIGNATURE PAGES WILL BE CONSOLIDATED INTO SINGLE DOCUMENT

Albuquerque Metropolitan Arroyo Flood Control Authority

Bruc MI

Bruce M. Thomson, Chair Board of Directors

6/23/2016

Date

Attest: what

Ronald D. Brown, Secretary-Treasurer Board of Directors

Approved as to Form:

Randy Autio AMAFCA Attorney

6/23/16 Date:

5-24-2016

City of Rio Rancho

Keith Riesberg City Manager

5/27/16 Date

Approved as to Form:

Jennifer Vega-Brown City Attorney

Date:

04-26-2016

EACH ENTITY WILL EXECUTE AGREEMENT INDIVIDUALLY. SIGNATURE PAGES WILL BE CONSOLIDATED INTO SINGLE DOCUMENT

City of Albuquerque

Approved as to Form

ssica M. Hernandez ity Attorney

<u>6/15/16</u> Date

Purchasing Approval

aumi

Ramona Martinez **Chief Procurement Officer**

le pleple

Recommended By:

Melissa Lozoya

Director, Department of Municipal Development

Date

Approved By

Robert J. Perry Chief Administrative Officer

Date

Date for of beginning of Fiscal Year: July 1

ATTACHMENT 1

CONTRIBUTION SCHEDULE

County of Bernalillo:

APPROVED BY:

10.28-10 Date Julie M. Baca

CCN 2016-0407

Bernalillo County Manager

RECOMMENDED BY:

Roger A. Paul, P.E.

Deputy County Manager for Public Works

APPROVED AS TO FORM ONLY:

4-24-2016 for Deputy County Attørney Date

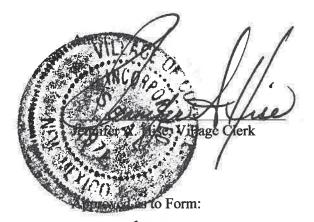
04-26-2016

EACH ENTITY WILL EXECUTE AGREEMENT INDIVIDUALLY. SIGNATURE PAGES WILL BE CONSOLIDATED INTO SINGLE DOCUMENT

Village of Los Ranchos de Albuquerque

& Ward

Kelly Ward Administrator


Date

6/21/16

Village of Corrales

Scott A. Kominiak, Mayor

5 26 16 Date

Ζ. John L. Appel Coppler Law Firm P.C. Village of Corrales Attorney

5-/26/16 Date

Date for beginning of Fiscal Year: July 1

04-26-2016

EACH ENTITY WILL EXECUTE AGREEMENT INDIVIDUALLY. SIGNATURE PAGES WILL BE CONSOLIDATED INTO SINGLE DOCUMENT

Town of Bernalillo

5/23/2016 Date

Jack Torres, Mayor Board of Directors

Attest:

Ida Fierro, Town Clerk

04-26-2016

EACH ENTITY WILL EXECUTE AGREEMENT INDIVIDUALLY. SIGNATURE PAGES WILL BE CONSOLIDATED INTO SINGLE DOCUMENT

Southern Sandoval County Arroyo Flood Control Authority

annes.

James Fahey, M.D., Chair Board of Directors

Date

5/20/10

Approved as to Form:

Bernard Metzgar SSCAFCA Attorne

20/16 5 Date:

04-26-2016

EACH ENTITY WILL EXECUTE AGREEMENT INDIVIDUALLY. SIGNATURE PAGES WILL BE CONSOLIDATED INTO SINGLE DOCUMENT

Sandoval County, New Mexico Flood Control Authority

Ker

Phillip Rios [#] County Manager

Date

5/16/2016

Approved as to Form:

Patrick Trujillo Sandoval County Attorney

016 Date:

04-26-2016

EACH ENTITY WILL EXECUTE AGREEMENT INDIVIDUALLY. SIGNATURE PAGES WILL BE CONSOLIDATED INTO SINGLE DOCUMENT

New Mexico Department of Transportation -**District 3**

Approved as to Form: Office of the General Counsel

6.29.2016 Date

Approved By:

enneth

Kenneth Murphy, NMDØT District Three Engineer

_____ 7/2/16

04-26-2016

EACH ENTITY WILL EXECUTE AGREEMENT INDIVIDUALLY. SIGNATURE PAGES WILL BE CONSOLIDATED INTO SINGLE DOCUMENT

University of New Mexico

ontralle David W. Harris Date MIV-

7-19-16

Executive Vice President for Administration, COO & CFO

Approved:

Carla P. Domenici

Carla P. Domenici Director, Safety and Risk Services

7-14-14

Date

Approved as to Form:

Élsa K. Cole, Esq. University Counsel

7 15 2014 Date

Date for of beginning of Fiscal Year: July 1

ATTACHMENT 1

CONTRIBUTION SCHEDULE

04-26-2016

EACH ENTITY WILL EXECUTE AGREEMENT INDIVIDUALLY. SIGNATURE PAGES WILL BE CONSOLIDATED INTO SINGLE DOCUMENT

Eastern Sandoval County Arroyo Flood Control Authority May 25, 2016 G Sal Reyes, Chair Date Board of Directors

Attest:

Ş.

Ida Fierro, Secretary Board of Directors

Approved as to Form:

Bernie Metze

ESCAFCA Attorney

Date: _____

ATTACHMENT 1 Sampling Cooperative Cost Allocation Determination (CAD) Tool

28-Apr-16

Number	Participant			ENTITY PAYMENT	FISCAL AGENT CREDIT (\$1k)
			\$ 132,000.00		
1	City of Albuquerque	1.38	\$ 45,574.50	\$45,600.00	
2	AMAFCA	0.43	\$ 14,319.39	\$14,400.00	\$ (1,000.00)
m	UNM	0.41	\$ 13,553.53	\$13,600.00	
4	NMDOT	0.12	\$ 3,865.56	\$3,900.00	
S	Bernalillo County	0.59	\$ 19,549.95	\$19,600.00	
9	Sandoval County	0.46	\$ 15,094.20	\$15,100.00	
7	Village of Corrales	0.04	\$ 1,393.20	\$1,400.00	
~	City of Rio Rancho	0.42	\$ 13,997.46	\$14,000.00	
6	Los Ranchos de Albuquerque	0.02 \$	\$ 705.79	\$1,000.00	
10	Town of Bernalillo	0.03 \$	\$ 903.81	\$1,000.00	
11	ESCAFCA	0.01	\$ 338.88	\$500.00	
12	SSCAFCA	0.08	\$ 2,703.72	\$2,900.00	
	Ratio Check (Sum = Weighting Factor)	4.00		\$132,000.00	